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Why decomposition? Why descent?

• Large scale problems provide a suitable setting for applying decomposition
methods.

• Decomposition in stochastic optimization problems amounts to considering
separately the impact of different realizations of uncertainty.

• The Progressive Hedging algorithm uses this structure to solve separate
scenario subproblems.

• Stopping test: can we use function values to evaluate the quality of the
candidate point for a solution? Example: bundle methods.
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Progressive Hedging Algorithm
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Nonanticipativity constraint

1st stage
decision

→ revealed
information

→ 2nd stage
decision

→ revealed
information

→ 3rd stage
decision

...
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One-stage stochastic primal problem


min

S∑
s=1

psfs(xs)

s.t. xs = z, for s = 1, . . . , S
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One-stage stochastic primal problem


min

S∑
s=1

psfs(xs)

s.t. xs = E[x], for s = 1, . . . , S

(← ws)

Relax the coupling constraints to obtain a separable Lagrangian, for w ∈ N⊥:

L(x,w) = E[f(x)] + ⟨w, x− E[x]⟩S

=
S∑
s=1

ps (fs(xs) + ⟨ws, xs⟩)
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Stochastic formulation: dual function

· Separable Lagrangian:

L(x,w) =
S∑
s=1

psLs(xs,ws)

where Ls(xs,ws) = fs(xs) + ⟨ws, xs⟩.

· Coupling constraints with separable objective function:

max
w∈N⊥

min
x
L(x,w)
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Stochastic formulation: dual problem

· Separable dual function:

h(w) =
S∑
s=1

pshs(ws)

for hs(ws) = max{−Ls(xs,ws)}.

· Dual problem: 
min
w

h(w)

s.t. w ∈ N⊥

( S∑
s=1

psws = 0
)
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Decomposition for different scenarios
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Progressive Hedging Algorithm: primal subproblems

The PHA employs an Augmented Lagrangian that replaces E[x] with E[xk].

E[f(x)] + ⟨w, x− E[x]⟩S +
r
2∥x− E[x]∥2Sy

E[f(x)] + ⟨w, x− E[xk]⟩S +
r
2∥x− E[xk]∥2S

• Advantage: preserve separability.
• Drawback: the quality of this approximation is not checked.
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Progressive Hedging Algorithm [RW91, R18]

• Subproblem solutions: for each s = 1, . . . , S,

xk+1/2s = argmin
{
fs(xs) + ⟨wks , xs⟩+

r
2 |xs − x

k
s |2
}

• Primal projection (onto N ): for each s = 1, . . . , S,

xk+1s = E
[
xk+1/2

]
.

• Dual update: for each s = 1, . . . , S,

wk+1s = wks + r
(
xk+1/2s − xk+1s

)
.
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Convergence

For each s = 1, . . . , S, assume that each function fs is lsc convex.

If the problem has a nonempty set of minimizers, then {xk} converges to a primal
solution x⋆, and {wk} converges to a dual solution w⋆, such that the distance from
each primal-dual iterate to the saddle point (x∗,w∗)∥∥∥∥∥

(
xk
1
rw

k

)
−

(
x⋆
1
rw

⋆

)∥∥∥∥∥
2

S

converges to 0 monotonically.
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What can be improved?

• PHA’s convergence proof is based on the Proximal Point algorithm for a
(primal-dual) maximal monotone operator.

• The dual update
wk+1s = wks + r

(
xk+1/2s − E

[
xk+1/2

])
is an inexact gradient step for the dual function with fix stepsize r.
Monotonicity depends on r being sufficiently small.

• Small r slows down convergence (dual term of stopping test becomes large).
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Bundle methods
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Proximal bundle methods

Consider minw H(w), for convex H.

Proximal point: wk+1 = prox1/r H(wk) := argmin
w

{
H(w) + 1

2r∥w− w
k∥2
}

• prox1/r H might be difficult to evaluate. Simpler step?
• Use a convex model Hk of H, such that Hk ≤ H, and variable r.

Approximate Proximal point: wk+1 = prox1/rkH
k(wk)
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Model Hk for H: definition

For an index set Bk ⊇ {1, . . . , k} of past iterations:

Hk(x) = max
i∈Bk

{
H(wi) + ⟨gi,w− wi⟩

}
where gi ∈ ∂H(wi), that is

∀w, H(w) ≥ H(wi) + ⟨gi,w− wi⟩

• This model approximates H from below.
• Along iterations, the model is enriched with new
linearizations, defining tighter models.

w
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Proximal bundle methods: main idea

wk+1 = prox1/rkH
k(ŵk)

for a center point ŵk.

Does wk+1 give sufficient descent for H?

H(wk+1)− H(ŵk) ≤ m(Hk(wk+1)− H(ŵk)), m ∈ (0, 1)

Yes: serious step → ŵk+1 = wk+1 − No: null step → ŵk+1 = ŵk.

In both cases, use H−information at wk+1 to improve the model Hk+1.

How can we apply these ideas to the PHA?
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Dual bundle method for H = h+ iN⊥

wk+1/2 = prox1/rkH
k(ŵk)

for a center point ŵk.

Dual Projection: wk+1 = PN⊥(wk+1/2).

Does wk+1 give sufficient descent for H?

Descent test: H(wk+1)− H(ŵk) ≤ m(Hk(wk+1)− H(ŵk)), m ∈ (0, 1)

Yes: serious step → ŵk+1 = wk+1 − No: null step → ŵk+1 = ŵk.

In both cases, use H−information at wk+1/2 to improve the model Hk+1.
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Separable model for H = h+ iN⊥

Model Hk(·) = hk(·) + ⟨xk, ·⟩, for each scenario:

• When evaluating h(wk+1/2), we find a primal point xk+1/2 such that

h(wk+1/2) = −L(xk+1/2,wk+1/2), and − xk+1/2 ∈ ∂h(wk+1/2).

• The new generated linearization for the dual function h at iteration k is

h(wk+1/2) + ⟨−xk+1/2,w− wk+1/2⟩S

• The indicator function iN⊥ is linearized by means of xk, the expected value of
past primal points, noting that ∂iN⊥(w) = NN⊥(w) = N .
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Separable subproblems: dual BPHA

In the BPHA, for each scenario, wk+1/2 solves

min
w

{
hk(w) + ⟨xk,w⟩+ 1

2rk
|w− ŵk|2

}
where

• hk is a piecewise linear model of h, and
• xk ∈ N defines the separable linearization of the indicator function iN⊥ , as
⟨xk,w⟩.

• ŵk is the last serious step.
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Separable subproblems: primal PHA

In the PHA, for each scenario, xk+1/2 solves

min
x

{
f(x) + ⟨wk, x⟩+ r

2 |x− x
k|2
}

where

• wk is a multiplier associated with the relaxation of the nonanticipativity
constraint.

• xk is the last projected primal point.
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PHA and BPHA comparison

PHA

xk+1/2 solves

min
x

{
f(x) + ⟨wk, x⟩+ r

2 |x− x
k|2
}

xk+1 = E
[
xk+1/2

]
wk+1 = wk + r

(
xk+1/2 − xk+1

)

BPHA

wk+1/2 solves

min
w

{
hk(w) + ⟨x̂k,w⟩+ 1

2rk
|w− ŵk|2

}
xk+1 = E

[
xk+1/2

]
wk+1 = ŵk + rk

(
xk+1/2 − xk+1

)
h(wk+1)− h(ŵk) ≤ −mδk+1
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Bundle Progressive Hedging
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Decomposition for different scenarios + descent
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Algorithm in primal terms

• For each scenario, compute xk+1/2 in the convex hull of past bundle
information.

• Update the intermediate dual point as wk+1/2 = ŵk + rk(xk+1/2 − xk).

• Project xk+1/2 and wk+1/2 onto N and N⊥, respectively, to obtain xk+1 and
wk+1.

• Check descent for the dual function to assess adequacy of its model and
wk+1. Only when there is sufficient descent, the candidate becomes ŵk+1.

• The new generated H−information at wk+1/2 is used to improve the models.
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Primal and dual projection-coordination step

For each scenario,

BPHA

• Primal projection: xk+1 = E[xk+1/2], where xk+1/2 is the subproblem solution.
• Dual intermediate point: wk+1/2 = ŵk + rk(xk+1/2 − xk).
• Dual projection: wk+1 = ŵk + rk(xk+1/2 − xk+1).

PHA

• Primal projection: xk+1 = E[xk+1/2], where xk+1/2 is the subproblem solution.
• Dual projection: wk+1 = wk + r

(
xk+1/2 − xk+1

)
.
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Bundle Progressive Hedging Algorithm

Stopping test

Define the predicted decrease by the model

δk+1 = E
[
hk(wk+1/2) + ⟨x̂k,wk+1/2⟩ − h(ŵk)

]
.

If δk+1 ≤ TOLδ, stop and return xk+1, and ŵk+1.

Descent test
E[h(wk+1)− h(ŵk)] ≤ mδk+1?

Yes: set ŵk+1 = wk+1, and define rk+1 ≥ rmin (serious step)
No: set ŵ+1 = ŵk, and define rk+1 ∈ [rmin, rk] (null step)

}
update the model.
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Convergence analysis
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Analysis à la Bundle

For each scenario,

• There can be infinitely many serious steps: after finitely many null steps,
there is a serious step.

K = {k : wk+1 is a serious step}

• There is a last serious step ŵ := ŵk̂, after which there are infinitely many null
steps.

K = {k : k > k̂}
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Serious steps

If there are infinitely many serious steps, then for each scenario and k ∈ K:

wk+1/2 = ŵk + rk(xk+1/2 − xk),
ŵk+1 = PN⊥(wk+1/2) ,
h(ŵk+1)− h(ŵk) ≤ mE[hk(wk+1/2) + ⟨xk,wk+1/2⟩ − h(ŵk)], for m ∈ (0, 1) .

Descent steps of the unifying framework of [ASSS21].

[ASSS21]: F. Atenas, C. Sagastizábal, P. J. Silva, and M. Solodov (2021). “A unified
analysis of descent sequences in weakly convex optimization, including
convergence rates for bundle methods”.
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Serious steps: convergence

Assumptions

• f is lsc convex.
Remark: h is always convex.

• Error bound for h : for any u ≥ infw∈N⊥ h(w), whenever w ∈ N⊥, h(w) ≤ u,
there holds

d(w, S) ≤ ℓ∥x∥

for any nearly nonanticipative x solving the problem that defines h(w).
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Serious steps: convergence

Assumptions

• f is lsc convex.
Remark: h is always convex.

• Error bound for h.
• Constraint qualification to guarantee strong duality.

Convergence is shown extending the analysis in [ASSS21] to deal with
intermediate projection steps.
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Serious steps: convergence

Theorem

• Any limit point of {xk}k∈K is primal optimal, such that {E[f(xk)]}k∈K
subsequentially converges to the primal optimal value.

• Both {ŵk}k∈K and {wk+1/2}k∈K converge to a dual optimal solution w⋆ with
linear rate: there exists q ∈ (0, 1), such that for all sufficiently large k,

∥ŵk − w⋆∥ ≤ cqk, ∥wk+1/2 − w⋆∥ ≤ cqk.

• {h(ŵk)}k∈K converges to the dual optimal value h⋆ with linear rate: there
exists q ∈ (0, 1), such that for all sufficiently large k,

h(ŵk+1)− h⋆ ≤ q(h(ŵk)− h⋆)

F. Atenas • A bundle-like approach to induce monotonicity in the Progressive Hedging algorithm | Convergence analysis • 29/32



Serious steps: convergence

Theorem

• Any limit point of {xk}k∈K is primal optimal, such that {E[f(xk)]}k∈K
subsequentially converges to the primal optimal value.
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Tail of null steps

Theorem

If there is a last serious step ŵ at iteration k̂, the stepsizes stabilize and a CQ
holds, then

• Any limit point of {xk}k∈K is primal optimal, such that {E[f(x)]}k∈K
subsequentially converges to the primal optimal value.

• Both {wk}k∈K and {wk+1/2}k∈K converge to some w∗ ∈ N⊥.
• Furthermore, w∗ coincides with the last serious step ŵ. It is also its own
proximal-step for h+ iN⊥ :

w∗ = prox 1
t∗
(h+ iN⊥)(w∗) ⇐⇒ w∗ is critical (minimizer).
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Contributions

• The BPHA proposes a dual-based approach to solve stochastic optimization
problems separately for different scenarios, using a model to approximate
the dual function.

• The quality of the approximation is measured by testing descent.
• The price to pay is an extra evaluation of the dual function per iteration.
• In exchange, we gain:

• Variable stepsizes.
• Linear rate of convergence.
• Stopping test.
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Future research

• Nonconvex setting: the current approach provides lower bounds (duality gap)
→ use generalized Augmented Lagrangians (sharp).

• Inexact Bundle Progressive Hedging: allow inexact subproblem solutions.

• Numerical experiments: how do we tune the parameters?
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QUESTIONS?

F. Atenas, C. Sagastizábal (2022). “A bundle-like approach to induce monotonicity in the
progressive hedging algorithm”. Working paper.

F. Atenas, C. Sagastizábal, P. J. Silva, and M. Solodov (2021). “A unified analysis of descent
sequences in weakly convex optimization, including convergence rates for bundle methods”.
Submitted.
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Bundle Progressive Hedging Algorithm

Solve separate primal QPs

For each scenario s = 1, . . . , S, find

αks = argmin
αs∈∆Bks

{
(Fks)⊤αs + (ŵks − tkxk)⊤Xksαs +

rk
2 αs(X

k
s)

⊤Xksαs
}

where Bks is the simplex associated with the set of indices Bks .

For each scenario s = 1, . . . , S, define

xk+1/2s =
∑
j∈Bks

αks,jx
j
s
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Dual reformulation

Solve separate primal QPs

For each s = 1, . . . , S, the intermediate dual points satisfy

wk+1/2s = argmin
ws

{
hks(ws) + (xk)⊤ws +

1
2rk
|ws − ŵks |2

}
,

where

hks(ws) = max
j∈Bks

{
−fs

(
xj−1/2s

)
− (xjs)⊤ws

}
.

is the lower convex model of hs.
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Dual reformulation

Solve separate primal QPs

For each s = 1, . . . , S, the intermediate dual points satisfy

wk+1/2s = argmin
ws

{
hks(ws) + (xk)⊤ws +

1
2rk
|ws − ŵks |2

}
,

and αks corresponds to the Lagrangian multipliers of
min
ws,rs

rs + (xk)⊤ws +
1
2rk
|w− ŵks |2

s.t. rs ≥ hks(ws), j ∈ Bks

F. Atenas • A bundle-like approach to induce monotonicity in the Progressive Hedging algorithm



dual reformulation

Descent test

If

S∑
s=1

ps[hs(wk+1s )− hs(ŵks)] ≤ m
S∑
s=1

ps[hks(w
k+1/2
s ) + (xk)⊤wk+1/2s − hs(ŵks)],

then set ŵk+1 = wk+1, and define rk+1 ≥ rmin. (serious step).

Otherwise, set ŵk+1 = ŵk, and define rk+1 ∈ [rmin, rk]. (null step).
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Scenario subproblems

For each scenario:

BPHA

αk = argmin
α∈∆k

∑
j∈Bk

αjf(xj, yj) + (ŵk − tkxk)⊤Xkα+
rk
2 α(X

k)⊤Xkα


xk+1/2 =

∑
j∈Bk

αkxj−1/2

PHA
xk+1/2 = argmin

{
f(x, y) + (wk)⊤x+ r

2 |x− x
k|2
}
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