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Outline

1. Quick introduction to WDRO
2. Regularizing WDRO
3. “Robust” generalization properties with WDRO
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Robust ML

We want ML models not to fail when applied in the real-world
Shifts in distribution:

“panda” “gibbon™
57.7% confidence 99.3% confidence

"Snow Road" by Yuichiro Haga, under CC BY 2.0, creativecommons.org/licenses/by/2.0/?ref=openverse. "Pioneertown Road - California" by ChrisGoldNY, under CC BY-NC 2.0,

creativecommons.org/licenses/by-nc/2.0/?ref=openverse. 3/23



Learning framework: from ERM to DRO

» Training data &1, .. ., £, ~ Pirain, Where Pi.i» unknown, belgonging to = C R?
e.g., & = (xi, yi) where x; input, y; label/target

» Obijective fy : = — R, parameterized by 6
e.g., logistic regression f;(€) = f5((x, y)) = log(1 + e ¥

» Empirical Risk Minimization (ERM)

min > (&)
i=1
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n<

4/23



Learning framework: from ERM to DRO

» Training data &1, .. ., £, ~ Pirain, Where Pi.i» unknown, belgonging to = C R?
e.g., & = (xi, yi) where x; input, y; label/target

» Obijective fy : = — R, parameterized by 6
e.g., logistic regression f;(€) = f5((x, y)) = log(1 + e ¥

» Empirical Risk Minimization (ERM)

n

1S ) 1<
min— > (&) =B, f(€) with = =6
i=1 i=1

— Take into account uncertainty in the training data
» Distributionally Robust Optimization (DRO):

min sup Eewo[fa(€)]  where U(P,) ambiguity set
QeU(Pn)
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Distributionally Robust Optimization

min sup Eewo[fe(§)]
QeU(Pp)

Choice of ambiguity set 2/(P,)
> u(ﬁn) defined by moment constraints (Delage and Ye, 2010).

» Through distance/divergence
UP,) ={Q : dist(Q, P) < p}
with e.g., KL, MMD...
» This talk: Wasserstein distance
UP) ={Q: Wo(Q. Py) < p}

Popular recently: nice theoretical/practical properties (Mohajerin Esfahani and Kuhn, 2018)

5/23



Wasserstein distributionally robust optimization (WDRO)

p-Wasserstein distance: for P, Q probability distributions on =,

WP, Q) = inf {Eeoyonll€ — CIP: m € P(ZD), m1 = P = Q)7

Transport plan between two probabilities on R:

“Transport a pile of sand onto another one:

(&, ¢) = mass of sand taken from P at £ to put

at ¢ for Q"

A e

-8 -6 -4 -2 0 2 4 6 8
u
By Lambdabadger, CC BY-SA 4.0,

commons.wikimedia.org/w/index.php?curid=64872543
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Wasserstein distributionally robust optimization (WDRO)
p-Wasserstein distance: for P, Q probability distributions on =,

Wo(P, Q) = inf {Egecronllé — CI7 - T € P(E2), 11 = P> = Q)7

WDRO objective:

sup  Eeoo[fe(€)]
Q:Wp(FP,.Q)<p

Dual: fundamental both in theory and practice

inf Ao’ +E igg{fs(C) — Mg —<¢IIP}

6/23



Wasserstein distributionally robust optimization (WDRO)
p-Wasserstein distance: for P, Q probability distributions on =,

Wo(P, Q) = inf {Eecronllé — CII° : m € P(Z2). m = Py = Q)

WDRO objective:

sup  Eeoo[fe(€)]
Q:Wp(FP,.Q)<p

Dual: fundamental both in theory and practice
inf Ao +Ec p |sup{fe(¢) — M€ —(II°}
A20 ¢e=

— For structured f, dual simplifies (solvable as min-max, recall S. Wright's talk)
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lllustration: logistic regression and distributional shift

E=(x,y)withy e -1, +1

Training:
X|Y = —1~ N(u_,5)
X|Y =+1~ N(us, 1)

fo((x,y)) = log (]_ + e-.\’(&x})

Testing:

Standard logistic regression
Test accuracy: 81%

WDRO Logistic regression
Test accuracy: 91%

X|Y = —1~ N(p-, 1)
X|Y = +1~ N(p+,5)

000
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Regularizing WDRO
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Regularization in optimal transport

inf{ Exc meP(E)m =P m=Q%%,
<~

linear
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Regularization in optimal transport

1
inf ¢ Erc + TEPE) mM=Pm=Qp7?,
g =
linear strongly convex

Most popular: entropic regularization

log ga25dP if P
—eki(mipe Q)= |1 PP Q@ T < PEq
+o00 otherwise

» Can be computed efficiently with the Sinkhorn algorithm
— Popularized optimal transport in the ML community (Cuturi, 2013)

9/23



Regularization in optimal transport

1
inf ¢ Erc + TEPE) mM=Pm=Qp7?,
g =
linear strongly convex

Most popular: entropic regularization

log ga25dP if P
—eki(mipe Q)= |1 PP Q@ T < PEq
+o00 otherwise

» Can be computed efficiently with the Sinkhorn algorithm
— Popularized optimal transport in the ML community (Cuturi, 2013)

» Nice theoretical properties :

» Provably approximates the unregularized Wasserstein distance (Genevay et al., 2019)
P Resulting distance is smooth (Feydy et al., 2019)
» Good statistical properties (Genevay et al., 2019)
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Regularizing the WDRO objective: but where?

WDRO objective: non-smooth as a function of 6

non-smooth
sup{ Eofi :QePE), Wo(P.Q)<p } = inf Ap"+Eg~p[sug{fe(({)—%IE—CII”}] :
N~~~ N——— A20 ¢e=

linear function non-smooth constraint
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Regularizing the WDRO objective: but where?

WDRO objective: non-smooth as a function of 6

non-smooth
sup{ Eofi :QePE), Wo(P.Q)<p } = inf Ap"+Eg~p[sug{fe(({)—%IE—CII”}] :
N~~~ N——— A20 ¢e=

linear function non-smooth constraint

Reformulation: using the definition of W, (P, Q)

sup { Enfy :meP(E’),m=P, Eeo~rllE =ClIIP <o
——

linear function linear constraint
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Regularizing the WDRO objective

Primal:

sup Enr,fo CTE 77(52), m =P, Egonrlll€ — ¢lI] <p
N—_— ————

linear function linear function
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Regularizing the WDRO objective

Primal: where R, S : M(Z?) — RU {400}

sup En,fy — R(r) :meP(E?),m=P, EeonlllE =CIPT+  S(m) <p
N— ——— N
linear function (strongly) convex linear function (strongly) convex
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Regularizing the WDRO objective

Primal: where R, S : M(Z?) — RU {400}
sup{ Enfy — i€ P(E),m =P, Egopenlllé — CIP] + <p
N~ N N~
linear function (strongly) convex linear function (strongly) convex
Dual:
inf inf Ao+ Egup|sup () — A€ —C|IP — +
A>0 ce=

Idea of proof: on = compact to use duality C(Z%)* = M(Z?)

» Lagrangian duality (Peypouquet, 2015)
» Fenchel duality (Bot et al., 2009)
» Exchange sup / E[-] (Rockafellar and Wets, 1998)
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Entropic regularization

Corollary (A., lutzeler, Malick, 2022)
With S — 0, R = €KL(-‘7T‘;;)S.t. (7'('0)1 =P

QAP
sup szf — EKL(T(' TI'D) = inf )\pp + €E£~P |Og (ECNWo(‘\E)e € >
TEPP(2)E (e ¢)nllE—CIPI<0 A0

To compare with:

sup  Bof = inf %p"+Es~P{sup{f(<)—xns—cnp}]
QEP(Z):Wp(P,Q)<p A>0 pom.

Similar expressions (from different perspectives) in Blanchet and Kang (2020) and Wang et al. (2021)
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Entropic regularization

Corollary (A., lutzeler, Malick, 2022)
With S =0, R = eKL(:|mo) s.t. (m0)1 = P

QAP
sup En,f — eKL(m|m0) = i’;f A" 4 eE¢.p log (E<~m](~\£)e ‘ >
TEPP(2)E (e ¢)nllE—CIPI<0 A0

To compare with:

sup Eqf = inf >\pp+E£~P |:sup{f(C)_)\||£_CHP}:|
QEP(Z):Wp(P,Q)<p A>0 pom.

Similar expressions (from different perspectives) in Blanchet and Kang (2020) and Wang et al. (2021)
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Choice of regularization measure

oT: when P, Q) fixed, entropic regularization w.r.t. my = P ® @ since

71 = P and = TKP®
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Choice of regularization measure

oT: when P, Q) fixed, entropic regularization w.r.t. my = P ® @ since
71 = P and = T<KP®
WDRO: not fixed! Choose, with (1)1 = P,

=l

ﬂo(dg,df) X P(d&) 14&5 e 7 d{
l=<IP

Wo(ddf) XX II-(EE e 7

13/23



Choice of regularization measure

oT: when P, Q) fixed, entropic regularization w.r.t. my = P ® @ since
71 = P and = T<KP®
WDRO: not fixed! Choose, with (1)1 = P,

=l

ﬂo(dg,df) X P(d&) 14&5 e 7 dC
l=<IP

Wo(ddf) XX ﬂcgz e 7

= Enforces m < Lebesgue

13/23



Approximation bound
Inspired by Genevay et al. (2019) for OT, bound the approximation error between:

sup {Enr,f} (WDRO)

WEP(EZ):7(1:P,]E(EVC)NW[HE—CHP]SP

sup {Enr, f — eKL(m|m0)} (e-WDRO)

TEP(Z2):m =P E(¢ ¢)ur[lI€—CIIPI<p

Proposition (A., lutzeler, Malick, 2022)

lg=¢liP

Under regularity assumptions on f and = C R? compact, with, m(d¢, d¢) o< P(d€) lceze™ @
then,

0 < val(WDRO) — val(e-WDRO) < O( dlog 1)

d¢
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Approximation bound
Inspired by Genevay et al. (2019) for OT, bound the approximation error between:

sup {Er,f} (WDRO)
TEP(Z2)m=P.E )unllE—CIIPI<p
sup {Enr, f — eKL(m|m0)} (e-WDRO)

TEP(Z2):m =P E(¢ ¢)ur[lI€—CIIPI<p

Proposition (A., lutzeler, Malick, 2022)
lig=<iIP

Under regularity assumptions on f and = C R? compact, with, m(d¢, d¢) o< P(d€) ¢eze™ @ d(
then,

0 < val(WDRO) — val(e-WDRO) < O( dlog 1)

Conclusion of the first part: regularize the WDRO objective
» Smooth and still tractable dual
» Provably close to original
» Interesting in practice (to be done)
» Interesting in theory (now in the second part!)
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“Robust” generalization properties of WDRO
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Statistical properties of WDRO
With 7, = 1577 5 where & ~ Py, iid. in = C R?

n

» Initial statistical guarantee for WDRO (Mohajerin Esfahani and Kuhn, 2018)

if p > o(n*%), with high probability,

sup  Eeo[f(§)] > Eenr,,,f(€)
Q:Wp(P1,Q)<p

can compute and optimize! cannot access
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Wo(F, Perain) < o(n—%)
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if p > o(n*%), with high probability,
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can compute and optimize! cannot access

» Consequence of standard OT theory (Fournier and Guillin, 2015): with high probability
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— But exponential dependance in d...

» To do better: treat the WDRO objective as a whole
e.g., (An and Gao, 2021) : guarantees with p o nz
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Statistical properties of WDRO
With 7, = 1577 5 where & ~ Py, iid. in = C R?

n

» Initial statistical guarantee for WDRO (Mohajerin Esfahani and Kuhn, 2018)

if p > o(n*%), with high probability,

sup  Eeo[f(§)] > Eenr,,,f(€)
Q:Wp(P1,Q)<p

can compute and optimize! cannot access

» Consequence of standard OT theory (Fournier and Guillin, 2015): with high probability
Wo( P, Paan) < O(n77)

— But exponential dependance in d...

» To do better: treat the WDRO objective as a whole
e.g., (An and Gao, 2021) : guarantees with p o nz

» But we can do even better, especially with regularization!
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What we would like
Define,

Fo(f. P) = sup {Er,f — eKL(m|mo)}

TEP(Z2):m =P E¢ ¢)ur[lI€—CIIPI<p

and recall P, = 1 3°7 |6, where & ~ Piain

Ideal result

With high probability, for all f € F,
F:(f' IS”) Z F;, (f, Ptrain)

with ,e>0

» Optimal requirement on radius when n — oo (Blanchet, Murthy, et al., 2021)
» Guarantee on the WDRO objective and p can be non-vanishing
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Nice consequences of ideal result, e.g. case e = 0

[A:’n = %Z/n:légi with 5, ~ Ptrain

1. Generalization bound:

with high probability,  Fp(f, Py) > Foup(f, Piain) > Ep, f
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Nice consequences of ideal result, e.g. case e = 0

'E)n = %Z/n:léﬁi with 5/ ~ Ptrain
1. Generalization bound:
with high probability,  F,(f, Py) > Fop,(f, Prain) > Ep,

2. Distribution shift: Py, # Prest i.6c Wa(Prrain, Prest) > 0

with high probability,  F,(f, Pa) > Fppn(F, Piran)
> Ep.. f
When P — Pn Z WZ(/Dtm/ny /D:‘r,,\:‘)
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Can we have this ideal result?

Yes!

Existing works:
» In very restricted settings (Shafieezadeh-Abadeh et al., 2019)
» With error terms and obligatory vanishing o (An and Gao, 2021)
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Can we have this ideal result?

Yes!

Existing works:
» In very restricted settings (Shafieezadeh-Abadeh et al., 2019)
» With error terms and obligatory vanishing o (An and Gao, 2021)

Our work: version of the ideal result (A., lutzeler, Malick, 2022)
» = compactand p =2
» ¢ > 0 (at least today)
» + assumptions about F, etc...

Idea of proof:
1. Why we need to lower bound X
2. How we lower bound X

19/23



Idea of proof 1: Why we need to lower bound A
Recall, for e > 0,
Fo(f.P) = sup {Enx, f — eKL(m|m0)}
TEP(Z2):m =P B¢ ¢)ur [ 16—CI2] <o

—inf A2 L E. - |l E f(c)—xguﬁ—cuz
_igo -+ e p, | log | Fenmg(ie) €

~ Lemma
For p > 0, € > 0 assume that there is some )\(p) > 0 such that, with high probability,

- : FQO-2E=CI>
VfeF, Fi(f.P)= X;rp(‘p) Ao® +E, p, [Iog <EM0HE) {e : D}

then we get the ideal result: with high probability, for all f € F,
F:(f, ﬁ),,) Z F;—pn(fy Ptrain)

with

= (55)

= Need a lower bound )\(p) on the optimal dual multiplier for P,

20/23



Idea of proof 2: How we lower bound X

—— General lower bound

—— Lower bound when p — 0
Recall: A dual multiplier for

Wa(Pn, Q) < p

When p large enough, the constraint
becomes inactive and A = 0

A(p)
@

X Pc—p

Jo
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Ideal theorem

_ Theorem (informal) (A., lutzeler, Malick, 2022)

For & o p, with
1
Pn = () (i‘f:?>
\vall

pn<p< % —O(n*%) D pe> O(n’%)

then, with high probability,

YfEF, Fi(f,Py) > Fi, (f, Puain)
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Ideal theorem

_ Theorem (informal) (A., lutzeler, Malick, 2022)

For & o p, with
1
On *0(—,),
\valu

then, with high probability,

YfEF, Fi(f,Py) > Fi, (f, Puain)

Remark: extends to unregularized (¢ = 0) with stronger assumptions on F
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Conclusion

Main takeaways:
» Present regularization for WDRO: smooth dual and still provably close to the original
» New generalization bounds for WDRO, especially for regularized WDRO
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Conclusion

Main takeaways:

» Present regularization for WDRO: smooth dual and still provably close to the original
» New generalization bounds for WDRO, especially for regularized WDRO

Future work:
» Wrap up the paper ®
» Generalize the current generalization bounds (non-compact, p # 2, other regularizations...)
» Efficient and scalable computational methods

Azizian, lutzeler, Malick (2022). “Regularization for Wasserstein Distributionally Robust Optimization”.
arXiv:2205.08826, submitted.

Azizian, lutzeler, Malick (2022). “Robust Generalization Bounds for Wasserstein Distributionally Robust
Optimization”. to be submitted.
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