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Multivariate two-sample testing

Data: {Xi}mi=1 iid P1 on Rd ; {Yj}nj=1 iid P2 on Rd , d ≥ 1

Test if the two samples came from the same distribution, i.e.,

H0 : P1 = P2 versus H1 : P1 6= P2

When d = 1: Student (1908), Wilcoxon (1945), Cramér von-Mises
(1928), Smirnov (1939), Wald and Wolfowitz (1940), Mann and
Whitney (1947), Anderson (1962), ...

When d > 1: Hotelling (1931), Weiss (1960), Bickel (1969),
Friedman and Rafsky (1979), Schilling (1986), Henze (1988), Liu
and Singh (1993), Székely (2003), Rosenbaum (2005), Gretton et
al. (2012), Biswas et al. (2014), Chen and Friedman (2017), ...
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When d = 1

Two-sample t-test: Compares X̄m = 1
m

∑m
i=1 Xi & Ȳn = 1

n

∑n
j=1 Yj

Reject H0 if test statistic is larger than (1−α)-th quantile of tm+n−2

Approximate (not valid for small sample sizes) level α test; requires
additional moment assumptions; not robust to outliers

Question: Can we find a distribution-free test which is also efficient, and
robust to outliers and contamination?

Answer: Wilcoxon rank-sum test [Wilcoxon (1945)]

Distribution-free: Null distribution is universal — does not depend
on the underlying distribution of the data

Exact test valid for all sample sizes; robust to outliers

Based on univariate ranks — advent of classical nonparametrics
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Comparison of Wilcoxon rank-sum (WRS) test with two-sample t-test

Pool (X1, . . . ,Xm,Y1, . . . ,Yn): (scaled) ranks R̂m,n(Xi )’s and R̂m,n(Yj)’s

1

n

n∑
j=1

R̂m,n(Yj)−
1

m

m∑
i=1

R̂m,n(Xi )

WRS test is distribution-free and exact for all P1 = P2 continuous,

as

under H0,
(
R̂m,n(X1), . . . , R̂m,n(Xm), R̂m,n(Y1), . . . , R̂m,n(Yn)

)
is

distributed uniformly over the (m+n)! permutations of
{

1
m+n

, 2
m+n

, . . . , 1
}

WRS test has 0.95 Pitman efficiency w.r.t t-test when P1 is Gaussian

Non-trivial efficiency lower bound of 0.864 w.r.t t-test [Hodges and
Lehmann (1956)]; efficiency can be +∞ (for heavy-tailed dist.)

Non-trivial efficiency lower bound of 1 w.r.t t-test [Chernoff and Savage
(1958)] when the following revised statistic is used:

1

n

n∑
j=1

Φ−1(R̂m,n(Yj))− 1

m

m∑
i=1

Φ−1(R̂m,n(Xi ))

Generalize all these properties to multivariate data
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Question: Can we construct multivariate robust distribution-free tests?

When d = 1 tests based on “ranks” are distribution-free

How do we define multivariate ranks that lead to distribution-free tests?

What about their statistical efficiency?

Optimal transport!
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1 Optimal Transport: Monge’s Problem
Introduction
Multivariate Ranks via Optimal Transport

2 Multivariate Two-sample Goodness-of-fit Testing
Hotelling T 2 and Kernel MMD
Distribution-free Testing
Lower bounds on Asymptotic (Pitman) Relative Efficiency

3 Testing for Independence Between Two Random Vectors
Distance Covariance
Distribution-free Testing
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Optimal transport: Monge’s problem

Gaspard Monge (1781): What is the cheapest way to transport a pile of
sand to cover a sinkhole?

Goal: inf
T :T (X )∼µ

Eν [c(X ,T (X ))] X ∼ ν

ν (“data” dist.) and µ (“reference” dist.)

c(x , y) ≥ 0: cost of transporting x to y (e.g., c(x , y) = ‖x − y‖2)

T transports ν to µ: T#ν = µ (i.e., T (X ) ∼ µ where X ∼ ν)
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Rank function as the optimal transport (OT) map: when d = 1

X ∼ ν (continuous dist.) on R, F ≡ Fν c.d.f. of ν

Rank: The population rank of x ∈ R is F (x) (a.k.a. the c.d.f. at x)

Property: F (X ) ∼ Uniform([0, 1]) ≡ µ; i.e., F transports ν to µ

If Eν [X 2] <∞, the c.d.f. F is the optimal transport (OT) map as

F = arg min
T :T#ν=µ

Eν [(X − T (X ))2]

where
c(x , y) = (x − y)2
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Sample rank map: when d = 1

Data: X1, . . . ,Xn iid ν (cont. distribution) on R

Sample rank map: R̂n : {X1,X2, . . . ,Xn} −→ { 1
n ,

2
n , . . . ,

n
n}

x(1) x(2) x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9) x(10)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

Data points

Empirical ranks

Sample rank map R̂n is the OT map that transports

νn := 1
n

n∑
i=1

δXi to µn := 1
n

n∑
j=1

δ j
n
,

i.e., R̂n := arg min
T :T#νn=µn

1

n

n∑
i=1

|Xi − T (Xi )|2 = arg max
T :T#νn=µn

1

n

n∑
i=1

X(i)·T (X(i))
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X ∼ ν; ν is a probability measure in Rd (abs. cont.)

Reference dist.: U ∼ µ on S ⊂ Rd (µ = Unif([0, 1]d), N(0, Id))

Find OT map T s.t. T (X )
d
= U ∼ µ (µ abs. cont.)

Population rank function (a.k.a OT map) [Chernozhukov et al. (2017)]

If Eν‖X‖2 <∞, rank function R : Rd → S is the transport map s.t.

R := arg min
T :T#ν=µ

Eν‖X − T (X )‖2

Properties of population rank function [Brenier (1991), McCann (1995)]

R(·) characterizes distribution: R1(x) = R2(x) ∀ x ∈ Rd iff P1 = P2

R(·) is invertible, i.e., there exists unique Q(·) s.t.

R ◦ Q(u) = u (µ-a.e.) and Q ◦ R(x) = x (ν-a.e.)

Both R(·) and Q(·) and gradients of convex functions
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If Eν‖X‖2 <∞, the population rank function R(·) is defined as

R := arg min
T :T#ν=µ

Eν‖X − T (X )‖2 (1)

Even when Eν‖X‖2 = +∞, R(·) can still be defined

Characterization of the population rank function [McCann (1995)]

Suppose X ∼ ν abs. cont. on Rd . Then ∃ ν-a.e. unique meas. mapping
R : Rd → S, transporting ν to µ (i.e., R#ν = µ), of the form

R(x) = ∇ϕ(x), for ν-a.e. x , (2)

where ϕ : Rd → R ∪ {+∞} is a convex function (cf. when d = 1).

Moreover, when Eν‖X‖2 <∞, R(·) as defined in (2) also satisfies (1).
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Data: X1, . . . ,Xn iid ν on Rd (abs. cont.); µ ∼ Unif([0, 1]d)

Empirical rank map R̂n: {X1, . . . ,Xn} → {c1, . . . , cn} ⊂ [0, 1]d —
sequence of “uniform-like” points (or quasi-Monte Carlo sequence)

(1,1)(0,1)

(0,0) (1,0)

Data points

Empirical ranks

Sample multivariate rank map is defined as the OT map s.t.

R̂n := arg min
T :T#νn=µn

1

n

n∑
i=1

‖Xi − T (Xi )‖2

where T transports νn := 1
n

∑n
i=1 δXi to µn := 1

n

∑n
j=1 δcj
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Computation: Assignment problem
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R̂n := arg minT :T#νn=µn

1
n

∑n
i=1 ‖Xi − T (Xi )‖2

Assignment problem (can be reduced to a linear program; the
Hungarian algorithm has worst case time complexity O(n3))

Various near linear time approximation algorithms exist for this
problem — Drake & Hougardya (2005), Agarwal & Varadarajan
(2004), Sharathkumar & Agarwal (2012), Agarwal et al. (2022)



Distribution-free property [Hallin (2017), Deb and S. (2019)]

Suppose that X1, . . . ,Xn iid on Rd with abs. cont. distribution. Then,

(R̂n(X1), . . . , R̂n(Xn))

is uniformly distributed over the n! permutations of {c1, . . . , cn}.

The first step to obtaining distribution-free tests [Hallin et al. (2021)]

Consistency [Deb and S. (2019), Deb, Bhattacharya and S. (2021)]

X1, . . . ,Xn iid ν (abs. cont.). If µn := 1
n

∑n
j=1 δcj

d→ µ (abs. cont.), then

1

n

n∑
i=1

‖R̂n(Xi )− R(Xi )‖2 p−→ 0 as n→∞.

Regularity to the empirical multivariate rank/OT map
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Question: What is the rate of convergence of R̂n?

Assume
∫
‖x‖2 dν(x) <∞,

∫
‖y‖2 dµ(y) <∞; R#ν = µ, R̂n#νn = µn

Rate of convergence [Deb, Ghosal and S. (2021)] Proof of this result

Suppose the population rank map R(·) is Lipschitz. Then, under
appropriate conditions on µn,

E

[
1

n

n∑
i=1

‖R̂n(Xi )− R(Xi )‖2

]
.


n−1/2 d = 2, 3,

n−1/2 log n d = 4,

n−2/d d > 4.

This is the optimal rate for d ≥ 4 [Hütter & Rigollet (2019)]

Estimation of the OT map R (R#ν = µ) Barycentric Projection

When {Xi}ni=1 and {cj}mj=1 may have unequal sample sizes, R can be

estimated using the barycentric projection R̃ (of the optimal
coupling in the 2-Wasserstein distance between {Xi} and {cj})

Under additional smoothness assumptions, R̃ can have faster rates
(by smoothing νn and µn)
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Multivariate two-sample goodness-of-fit test

Testing for equality of two multivariate distributions

Data: {Xi}mi=1 iid P1 on Rd ; {Yj}nj=1 iid P2 on Rd , d ≥ 1

Test if the two samples came from the same distribution, i.e.,

H0 : P1 = P2 versus H1 : P1 6= P2

Hotelling T 2 statistic [Hotelling (1931)]: The multivariate
analogue of Student’s t-statistic, given by

T2
m,n :=

mn

m + n

(
X̄ − Ȳ

)>
S−1
m,n

(
X̄ − Ȳ

)
;

where Sm,n is pooled covariance matrix

Reject H0 iff T2
m,n > cα [asymp. cut-off cα: (1− α) quantile of χ2

d ]
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Kernel two-sample test [Gretton et al. (2012)]

The maximum mean discrepancy (MMD) btw. P1 and P2:

MMD2(P1,P2) := E[K (X ,X ′)] + E[K (Y ,Y ′)]− 2E[K (X ,Y )] ≥ 0,

K : Rd × Rd is a kernel function2; X ,X ′
iid∼ P1; Y ,Y ′

iid∼ P2

MMD2(P1,P2) = 0 iff P1 = P2 (if K is characteristic)

Estimator: MMD2
m,n

(
{Xi}mi=1, {Yj}nj=1

)
:= A + B − 2C where

A :=
1

m2

m∑
i,j=1

K (Xi ,Xj), B :=
1

n2

n∑
i,j=1

K (Yi ,Yj), C :=
1

mn

m,n∑
i,j=1

K (Xi ,Yj)

Reject H0 : P1 = P2 iff MMD2
m,n > κα

Critical value κα depends on P1 = P2! (but can be by-passed by using a

permutation test)

2
Gaussian kernel: K(x, y) = exp(−‖x − y‖2); Distance kernel: K(x, y) = 1

2
{‖x‖ + ‖y‖ − ‖x − y‖}
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Data: {Xi}mi=1 iid P1 (abs. cont.), {Yj}nj=1 iid P2 on Rd , d ≥ 1

Reference dist.: µ on S ⊂ Rd (abs. cont.; e.g., µ = Unif([0, 1]d))

Proposed tests [Deb and S. (2019), Deb, Bhattacharya and S. (2021)]

Joint rank map: The sample ranks of the pooled observations:

R̂m,n : {X1, . . . ,Xm,Y1, . . . ,Yn} → {c1, . . . , cm+n} ⊂ S

Rank Hotelling: RT2
m,n := T2

m,n

(
{R̂m,n(Xi )}, {R̂m,n(Yj)}

)
Rank MMD: RMMD2

m,n := MMD2
m,n

(
{R̂m,n(Xi )}, {R̂m,n(Yj)}

)

In general, our principle is to start with a “good” test and replace
the Xi ’s and Yj ’s with their pooled multivariate ranks

This yields the Wilcoxon rank-sum test when applied to the t-test

Distribution-freeness [Deb and S. (2019)]

Under H0, distributions of RT2
m,n,RMMD2

m,n are free of P1 ≡ P2
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Rank Hotelling test [Deb, Bhattacharya, and S. (2021)]

Rank Hotelling test: φm,n ≡ 1{RT2
m,n > κ

(m,n)
α } — distribution-free

κ
(m,n)
α depends on cj ’s, m, n and d

Asymptotic null distribution (Deb, Bhattacharya, and S., 2021)

Under H0, if µn := 1
n

∑n
j=1 δcj

d→ µ, then,

RT2
m,n

d→ χ2
d as min{m, n} → ∞.

The choice of the cj ’s have no effect for large m, n

Power (Deb, Bhattacharya, and S., 2021)

Under location shift alternatives (P1 6= P2), if (i) µn
d→ µ, and

(ii) m
m+n → λ ∈ (0, 1), then,

lim
m,n→∞

EH1 [φm,n] = 1.

Question: How does rank Hotelling RT2
m,n compare with Hotelling T2

m,n?
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Rank MMD test [Deb and S. (2019)]

Rank MMD: RMMD2
m,n = MMD2

m,n

(
{R̂m,n(Xi )}, {R̂m,n(Yj)}

)
Rank MMD test: Reject H0 iff RMMD2

m,n > κ
(m,n)
α ;

κ
(m,n)
α is a universal threshold (free of P1 ≡ P2)

Dist. of RMMD2
m,n (under H0) just depends on cj ’s, m, n and d

Limiting distribution under H0 : P1 = P2 [Deb and S. (2019)]

If (i) P1 ≡ P2 is abs. cont., and (ii) µn := 1
n

∑n
j=1 δcj

d→ µ,

then, under H0, for universal {λj ≥ 0 : j ≥ 1} and {Zj}j≥1 iid N(0, 1),

mn

m + n
RMMD2

m,n
d−→

∞∑
j=1

λjZ
2
j as min{m, n} → ∞.

The choice of the cj ’s has no effect for large m, n
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Asymptotic stabilization of critical values

Critical values: κ
(m,n)
α

n = 100 300 500 700 900

α = 0.05 0.39 0.40 0.39 0.40 0.40

α = 0.10 0.36 0.36 0.36 0.36 0.36

Table: Thresholds for α = 0.05, 0.1 & m = n = 100, 300, 500, 700, 900, d = 2.

n = 100 300 500 700 900

α = 0.05 1.37 1.38 1.38 1.38 1.38

α = 0.10 1.34 1.35 1.35 1.35 1.35

Table: Thresholds for α = 0.05, 0.1 & m = n = 100, 300, 500, 700, 900, d = 8.



Connection to the two-sample Cramér-von Mises statistic when d = 1

When d = 1, RMMD2
m,n is equivalent to two-sample Cramér-von Mises

statistic [Anderson (1962)] when distance kernela is used [Székely (2003)]:

RMMD2
m,n = 2

∫ {
FX
m(t)− FY

n (t)
}2

dFm+n(t)

where FX
n , FY

n , Fm+n are empirical cdf’s of the X ’s, Y ’s, and pooled sample.

aK(x , y) = 2−1(|x |+ |y | − |x − y |)

Power [Deb and S. (2019)]

Under P1 6= P2, if (i) µn
d→ µ, and (ii) m

m+n → λ ∈ (0, 1), then,

P
(
RMMDm,n > κ(m,n)

α

)
→ 1 as m, n→∞.

Proposed test has asymptotic power 1, against all fixed alternatives

Question: Can we quantify the power of these OT-based tests?
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Left panel:

X1

X2

X3

 ∼ N3(0, I3);

Y1

Y2

Y3

 ∼ N3(µ13, I3) as µ ∈ R varies

Right panel: U = (U1,U2,U3), V = (V1,V2,V3), Ui = eXi , Vi = eYi

Performance of 4 tests: Energy, Rank energy, Crossmatch, HHG



More simulations

(C) (HHG) (EN) (REN)

V1 0.13 0.15 0.13 0.34

V2 0.34 0.94 0.94 0.89

V3 0.41 0.34 0.34 0.46

V4 0.34 0.31 0.33 0.32

V5 0.73 0.70 0.56 0.93

V6 0.90 0.88 0.82 0.99

V7 0.13 0.51 0.65 0.63

V8 0.11 0.39 0.35 0.43

V9 0.06 1.00 0.97 1.00

V10 0.28 0.99 1.00 0.59

Table: Proportion of times the null hypothesis was rejected across 10 settings.
Here n = 200, d = 3. Here (C) – Rosenbaum’s crossmatch test [Rosenbaum
(2005)], (HHG) – Heller, Heller and Gorfine [Heller et al. (2013)], (EN) –
energy statistic [Székely and Rizzo (2013)], (REN) – rank energy test.
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Question: How to compare two consistent tests SN and TN?

Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948),
Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]

X1, . . . ,Xm
iid∼ Pθ1 & Y1, . . . ,Yn

iid∼ Pθ2 ; N = m+n; m
N ≈ λ ∈ (0, 1)

{Pθ}θ∈Θ⊂Rp : “smooth” (satisfies DQM) parametric family

Test H0 : θ2 = θ1 vs. H1 : θ2 = θ1 + ∆; ∆→ 0

Fix α ∈ (0, 1) (level) and β ∈ (α, 1) (power)

Let N∆(T·) ≡ N∆ denote the minimum number of samples s.t.:

EH0 [TN∆
] = α and EH1 [TN∆

] ≥ β

The asymptotic (Pitman) efficiency of SN w.r.t. TN is given by

ARE (SN ,TN) := lim
∆→0

N∆(T·)

N∆(S·)

ARE (SN ,TN) can depend on α and β, but in some cases it doesn’t!
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Hotelling T 2: T2
m,n({Xi}, {Yj}) = mn

m+n

(
X̄ − Ȳ

)>
S−1
m,n

(
X̄ − Ȳ

)
Rank Hotelling: RT2

m,n = T2
m,n

(
{R̂m,n(Xi )}, {R̂m,n(Yj)}

)
X1, . . . ,Xm

iid∼ Pθ1 & Y1, . . . ,Yn
iid∼ Pθ2 ; N = m + n

{Pθ}θ∈Θ⊂Rp : “smooth” (satisfies DQM) parametric family

Consider H0 : θ2 = θ1 vs. H1 : θ2 = θ1 + hN−1/2; h 6= 0 ∈ Rp

ARE (RT2
m,n,T

2
m,n) can be derived under the above alternatives

Some observations

Expression of ARE (RT2
m,n,T

2
m,n) does not depend on α and β

Asymp. dist. of RT2
m,n can depend on choice of µ (reference dist.)

Can we lower bound ARE for sub-classes of multivariate dists., i.e.,

min
F

ARE (RT2
m,n,T

2
m,n) = ??
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X1, . . . ,Xm
iid∼ Pθ1 & Y1, . . . ,Yn

iid∼ Pθ2 ; N = m + n

Independent coordinates case

Find = {Pθ}θ∈Θ has density pθ(z1, . . . , zd) =
∏d

i=1 fi (zi − θi ), θ ∈ Rd

Theorem [Deb, Bhattacharya, and S. (2021)]

Suppose m
N → λ ∈ (0, 1). If µN := 1

N

∑N
j=1 δcj

d→ Unif([0, 1]d) ≡ µ, then

min
Find

ARE (RT2
m,n,T

2
m,n) = 0.864.

If µN
d→ N(0, Id) ≡ µ, then

min
Find

ARE (RT2
m,n,T

2
m,n) = 1.

Generalizes Hodges & Lehmann (1956), Chernoff & Savage (1958)

ARE can be arbitrarily large (can tend to +∞) for heavy tailed dists.
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Elliptically symmetric distributions

Fell = {Pθ}θ∈Θ is class of elliptically symmetric distributions on Rd , i.e.,

pθ(x) ∝ (det(Σ))−
1
2 f
(
(x − θ)>Σ−1(x − θ)

)
, for all x ∈ Rd

Theorem [Deb, Bhattacharya, and S. (2021)]

Suppose: (i) µN
d→ N(0, Id) ≡ µ, (ii) m

N → λ ∈ (0, 1). Then,

min
Fell

ARE (RT2
m,n,T

2
m,n) = 1.

This generalizes the famous result of Chernoff and Savage (1958)
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Model for Independent Component Analysis (ICA)

FICA = {f1(· − θ) : f1 ∈ F}θ∈Rd where f1 ∈ F has the form

f1(x1, . . . , xd) =
d∏

i=1

f̃i

 d∑
j=1

ajixj


where f̃1, f̃2, . . . , f̃d are univariate densities, and A = (aij)d×d is an
orthogonal matrix (unknown)

Thus, f1 is the density of Xd×1 where

X = AW

with Wd×1 having independent components.

Theorem [Deb, Bhattacharya, and S. (2021)]

Suppose: (i) µN
d→ N(0, Id) ≡ µ, (ii) m

N → λ ∈ (0, 1). Then,
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Asymptotic efficiency of the Rank MMD test

Rank MMD: RMMD2
m,n = MMD2

m,n

(
{R̂m,n(Xi )}, {R̂m,n(Yj)}

)
Test: H0 : θ2 = θ1 vs. H1 : θ2 = θ1 + hN−1/2; h 6= 0 ∈ Rp

Theorem [Deb, Bhattacharya and S. (2021+)]

Under H1 : θ2 = θ1 + hN−1/2,

mn

N
RMMD2

m,n
d−→

∞∑
j=1

λj Z̃
2
j

where Z̃ 2
j has non-central chi-squared distribution (depending on h).

Let TN denote the level α test based on the RMMD2
m,n

Then, EH0 [TN ] = α and lim
‖h‖→∞

lim
N→∞

EH1 [TN ] = 1

Rank MMD test has non-trivial power at the contiguous N−1/2-scale

Rank MMD has non-zero ARE compared to kernel MMD
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Other (asymptotically) distribution-free GoF tests

Crossmatch test of Rosenbaum (2005) is a distribution-free,
consistent, and computationally feasible GoF test

The crossmatch test SN does not distinguish between the null and
the alternative at the contiguous N−1/2-scale, i.e., for any h:

EH0 [SN ] = α and EH1 [SN ] −→ α

Pitman efficiency of rank MMD w.r.t. crossmatch is +∞

Many other graph-baseda (asymptotically distribution-free) tests are
also asymptotically powerless at N−1/2-scale [Bhattacharya (2019)]

The data depth-based (asymptotically distribution-free) tests have
power at N−1/2-scale, but computationally infeasible as d increases

aincluding Friedman & Rafsky (1979)’s MST based test; Schilling (1988) and
Henze (1988) used k-nearest neighbor (k-NN) graph
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Testing for mutual independence

(X ,Y ) ∼ P on Rd1 × Rd2 ; d1, d2 ≥ 1

Data: n iid observations {(Xi ,Yi )}ni=1 from P

Test if X is independent of Y , i.e.,

H0 : X ⊥⊥ Y versus H1 : X 6⊥⊥ Y

When d1 = d2 = 1: Pearson (1904), Spearman (1904), Kendall
(1938), Hoeffding (1948), Blomqvist (1950), Blum et al. (1961),
Rosenblatt (1975), Feuerverger (1993), ...

When d1 > 1 or d2 > 1: Friedman and Rafsky (1979), Székely et
al. (2007), Gretton et al. (2008), Oja (2010), Heller et al. (2013),
Biswas et al. (2016), Berrett and Samworth (2019), ...

Can also test for K -vector/sample analogues of these problems
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Testing for mutual independence

(X ,Y ) ∼ P on Rd1 × Rd2 , X ∼ PX , Y ∼ PY , d1, d2 ≥ 1

Data: {(Xi ,Yi ) : 1 ≤ i ≤ n} iid P

Test: H0 : X ⊥⊥ Y vs. H1 : X 6⊥⊥ Y

Distance Covariance [Szekely et al. (2007, 2009), Feuerverger (1993)]

Let (X ,Y ), (X ′,Y ′), (X ′′,Y ′′)
iid∼ P (with finite mean), and set

h(s, t) := ‖s − t‖

Distance covariance: dCov(X ,Y ) is defined as

dCov(X ,Y ) := E
[
h(X ,X ′)h(Y ,Y ′)

]
+ E

[
h(X ,X ′)

]
E
[
h(Y ,Y ′)

]
− 2E

[
h(X ,X ′)h(Y ,Y ′′)

]
≥ 0

Characterizes independence: dCov(X ,Y ) = 0 iff X ⊥⊥ Y
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Test: H0 : X ⊥⊥ Y vs. H1 : X 6⊥⊥ Y

Distance covariance test: Reject H0 if

dCovn({(Xi ,Yi )}ni=1) > cα

Critical value cα depends on n, PX , PY ! (can use permutation test)

Take µ1 = Uniform([0, 1]d1 ) and µ2 = Uniform([0, 1]d2 )

Rank distance covariance [Deb and S. (2019)]

Sample rank of Xi : R̂X
n : {X1, . . . ,Xn} → {c(1)

1 , . . . , c
(1)
n } ⊂ [0, 1]d1

Sample rank of Yi : R̂Y
n : {Y1, . . . ,Yn} → {c(2)

1 , . . . , c
(2)
n } ⊂ [0, 1]d2

Rank distance cov.: RdCovn = dCovn

({
(R̂X

n (Xi ), R̂
Y
n (Yi ))

}n

i=1

)
Distribution-freeness

X and Y abs. cont. Under H0, the dist. of RdCovn is free of PX and PY .
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Under H0, distribution of RdCovn just depends on c
(k)
j ’s, n, d1, d2

Rank distance covariance test: Reject H0 if RdCovn > κ
(n)
α

Limiting distribution under H0 [Deb and S. (2019)]

Suppose: (i) X and Y are abs. cont., and

(ii) 1
n

∑n
j=1 δc(k)

j

d→ Uniform([0, 1]dk ), for k = 1, 2.

Then, under H0, ∃ universal distribution Ld1,d2 (not depending on c
(k)
j ’s)

s.t.
n · Rdcovn

d−→ Ld1,d2 as n→∞.

The choice of the c
(k)
j ’s have no effect for large n

Power

Suppose X 6⊥⊥ Y , and (i) & (ii) hold. Then,

P
(
RdCovn > κ(n)

α

)
→ 1 as n→∞.

Proposed test has asymptotic power 1, against all fixed alternatives
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When d1 = d2 = 1

When d1 = d2 = 1, RdCovn has close connections to Hoeffding’s
D-statistic [Hoeffding (1948)] (see Blum et al. (1961)):

1

4
RdCovn =

∫ {
Fn(x , y)− FX

n (x)FY
n (y)

}2
dFX

n (x) dFY
n (y)

where Fn, FX
n , and FY

n are the empirical c.d.f.’s of (X ,Y ), X and Y .

Our general principle could have been used with any other procedure
for mutual independence testing, e.g., the HSIC statistic [Gretton et
al. (2005)] which uses ideas from RKHS, ...

The other computationally feasible distribution-free test in the
context was proposed in Heller et al. (2012); however they do not
guarantee consistency against all fixed alternatives
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Summary

Multivariate distribution-free testing procedures

Based on multivariate ranks defined via optimal transport

Proposed a general framework, other examples may include testing
for symmetry, testing the equality of K -distributions, independence
testing of K -vectors, ...

The proposed tests are: (i) distribution-free and have good efficiency,
(ii) computationally feasible, (iii) more powerful for distributions
with heavy tails, and (iv) robust to outliers & contamination
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νn := 1
n

∑n
i=1 δXi , µn := 1

n

∑n
j=1 δcj

OT maps: R#ν = µ, R̂n#νn = µn

Suppose R = ∇ϕ, where ϕ : Rd → R ∪ {+∞} is convex

Legendre-Fenchel dual of ϕ: ϕ∗(y) := supx∈Rd [x>y − ϕ(x)]

Fact 1: R is 1
λ -Lipschitz iff ϕ∗ is λ-strongly convex

ϕ∗ is λ-strongly convex if, for all x , y ∈ Dom(ϕ∗),

ϕ∗(y) ≥ ϕ∗(x) +∇ϕ∗(x)>(y − x) +
λ

2
‖y − x‖2.

Fact 2: ∇ϕ∗(R(x)) = x a.e.

The 2-Wasserstein distance (squared) between ν and µ is defined as:

W 2
2 (ν, µ) := min

π∈Π(ν,µ)

∫
‖x − y‖2 dπ(x , y),

where Π(ν, µ) := {distributions on Rd × Rd with marginals ν & µ}.
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Estimation of OT map [Deb, Ghosal and S. (2021)] Rate of convergence

If the population rank map R(·) is 1
λ -Lipschitz, then

λ

∫
‖R̂n(x)−R(x)‖2 dνn(x) ≤W 2

2 (νn, µ̃n)−W 2
2 (νn, µn)+2

∫
g d(µn−µ̃n)

where µ̃n := 1
n

∑n
i=1 δR(Xi ) and g(y) := ϕ∗(y)− 1

2‖y‖
2.

Then, recalling νn := 1
n

∑n
i=1 δXi and µn := 1

n

∑n
j=1 δcj ,

D1 :=

∫
ϕ∗dµn −

∫
ϕ∗d µ̃n

=

∫
[ϕ∗(R̂n(x))− ϕ∗(R(x))]dνn(x) (as R̂n#νn = µn)

(a)

≥
∫ {
∇ϕ∗(R(x))>(R̂n(x)− R(x)) +

λ

2
‖R̂n(x)− R(x)‖2

}
dνn(x)

(b)
=

∫
x>(R̂n(x)− R(x))dνn(x)︸ ︷︷ ︸

D2

+
λ

2

∫
‖R̂n(x)− R(x)‖2dνn(x)

Fact 3: 2D2 = W 2
2 (νn, µ̃n)−W 2

2 (νn, µn) +
∫
‖y‖2 d(µn − µ̃n)(y)
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Then 2-Wasserstein (squared) distance between ν and µ is:

W 2
2 (ν, µ) := min

π∈Π(ν,µ)

∫
‖x − y‖2 dπ(x , y), (3)

where Π(ν, µ) := {distributions on Rd × Rd with marginals ν & µ}.

Let γ be a minimizer of (3). The barycentric projection of γ is

T (x) :=

∫
y
y dγ(x , y)∫
y
dγ(x , y)

= Eγ [Y |X = x ].

Thus, T (x) is the conditional mean of Y given X = x under γ.

When ∃ an OT map R such that R#ν = µ, then R = T

Estimation of T using Barycentric projection

Let νn := 1
n

∑n
i=1 δXi and µm := 1

m

∑m
j=1 δcj

Let γ̃ := arg min
π∈Π(νn,µm)

∫
‖x − y‖2 dπ(x , y) — optimal coupling

Define R̃ as the barycentric projection of γ̃
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