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introduction: problem setup

▷ Multi-level stochastic composition optimization problem:

min
x∈X

{
F (x) = f1 ◦ · · · ◦ fT (x)

}
(1)

▷ Functions fi : Rdi → Rdi−1 for i = 1, . . . ,T are continuously
differentiable. Here d0 := 1.

▷ Feasible set X is either RdT or a closed convex constraint set.
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introduction: problem setup

▷ Stochastic setup:

▷ fi (y) := Eξi [Gi (y , ξi )] for random vectors ξi ∈ Rd̃i .

▷ When T = 1, we have the well-studied standard
stochastic optimization or (population) risk minimization
problem.
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introduction: motivating examples

▷ Simple example for T = 2: Minimizing variance instead of
expectation.

▷ Mean-deviation risk-averse optimization is given by the
following form

max
x

{
E[U(x , ξ)]− λE

[
{E[U(x , ξ)]− U(x , ξ)}2

]1/2}
.

▷ As noted in several prior works, the above problem is a
stochastic 3-level composition optimization problem with

f3 := E[U(x , ξ)]

f2(z , x) := E[{z − U(x , ξ)}2]

f1((y1, y2)) := y1 −
√

y2 + δ.
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motivating examples

▷ Sparse additive modeling in non-parametric statistics [Wang
et al., 2017].

▷ Area Under the Precision-Recall Curve (AUPRC)
maximization [Qi et al., 2021, Wang et al., 2022, Qiu et al.,
2022].

▷ Bayesian optimization [Astudillo and Frazier, 2021].

▷ Model-agnostic meta-learning [Chen et al., 2021, Fallah et al.,
2021].

▷ Training Graph Neural Networks [Cong et al., 2020].
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introduction: problem setup

▷ Gradient of F (x) is

∇F (x) = ∇fT (yT )∇fT−1(yT−1) · · · ∇f1(y1),

where ∇fi denotes the transpose of the Jacobian of fi , and

yi = fi+1 ◦ · · · ◦ fT (x)

for 1 ≤ i < T , with yT = x .

▷ (yi )1≤i≤T represents the required function values at which to
evaluate the Jacobian.

7 / 47



introduction: problem setup

▷ Goal: Develop iterative algorithms to solve (1), given noisy
evaluations of ∇fi ’s and fi ’s based on one sample of (ξi )1≤i≤T

per iteration.

▷ Challenge: Obtaining gradient estimators in the iterative
setting with controlled bias and higher moments becomes
non-trivial due to the nested structure.
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overview of results

▷ Question: Can we obtain level-independent oracle complexity
results?

▷ Motivation:

▷ Large deviation results by Ermoliev and Norkin [2013]

▷ Central Limit Theorems by Dentcheva et al. [2017]

for Sample-Average Approximation (also called Empirical Risk
Minimization in statistics/machine learning) provide required
evidence.
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overview of results

Method Yang et al. [2019] NASA LiNASA

Convergence Rate OT

(
N−4/(7+T )

)
OT

(
N−1/2

)
Oracle Complexity OT

(
1/ϵ(7+T )/2

)
OT

(
1/ϵ6

)
OT

(
1/ϵ4

)
Mini-batch No Yes No

Feasible Set X = RdT (Un)constrained

Oracle Assumption Finite 4th moment Finite 2nd moment

▷ Our algorithm is based on the Nested Average Stochastic
Approximation (NASA) proposed by Ghadimi et al. [2020] for
T = 2.
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overview of results

▷ Zhang and Xiao [2021], Ruszczyński [2021]1 and Chen et al.
[2021] also obtained similar level-independent rates. However,
they required:

▷ a mini-batch of samples with size that scales badly with
T [Zhang and Xiao, 2021] (or)

▷ stronger smoothness assumptions on the stochastic
functions itself [Zhang and Xiao, 2021, Chen et al., 2021]
(or)

▷ boundedness requirements on the feasible set
[Ruszczyński, 2021].

1Ruszczyński [2021] also established asymptotic results in the non-smooth
case.
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Multi-Level NASA
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multi-level nasa

▷ We use k (as superscript) to represent the iteration index.

▷ In each iteration, we update a triple (xk , {wk
i }Ti=1, z

k):

▷ xk – convex combinations of the solutions to
gradient-descent subproblem

▷ {wk
i }Ti=1 – the estimates of inner function values fi

▷ zk – stochastic gradient of F .
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multi-level nasa

▷ In each iteration, we perform (projected) gradient descent:

uk = argmin
y∈X

{
⟨zk , y − xk⟩+ β

2
∥y − xk∥2

}
where xk is the current iterate and zk is the stochastic
gradient at the current iterate.

▷ For some parameter τk , set:

xk+1 = (1− τk)x
k + τku

k
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multi-level nasa

▷ How to estimate the stochastic gradient zk?

▷ Recall:

∇F (x) = ∇fT (yT )∇fT−1(yT−1) · · · ∇f1(y1),

where ∇fi denotes the transpose of the Jacobian of fi , and

yi = fi+1 ◦ · · · ◦ fT (x)

for 1 ≤ i < T , with yT = x .

▷ The (yi )1≤i≤T represents the required function values at
which to evaluate the Jacobian.
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multi-level nasa

▷ How to estimate the stochastic gradient zk :

▷ Let wk
i represent estimates of yi at iteration k .

▷ For each k , with wk
i being the input, the stochastic

oracle outputs:

▷ Noisy function values: G k+1
i ∈ Rdi

▷ Noisy Jacobians: Jk+1
i ∈ Rdi×di−1
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multi-level nasa

▷ The sequences wk
i is updated as:

wk+1
i = (1− τk)w

k
i + τk Ḡ

k+1
i , 1 ≤ i ≤ T ,

where

Ḡ k+1
i =

1

bk

bk∑
j=1

G k+1
i ,j .

▷ The stochastic gradient zk is updated as:

zk+1 = (1− τk)z
k + τk

T∏
i=1

Jk+1
T+1−i .
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multi-level nasa

Input: Positive integer sequences {bk , τk}k≥0, step-size
parameter β, and initial points x0 ∈ X , z0 ∈ RdT and
w0
i ∈ Rdi 1 ≤ i ≤ T , and a probability mass function PR(·)

supported over {1, 2, . . . ,N}, where N is the number of
iterations.

0. Generate a random integer number R according to PR(·).

for k = 0, 1, 2, . . . ,R do
1. Compute uk and query the oracle to obtain the stochastic
gradients Jk+1

i , and function values G k+1
i ,j at wk

i+1 for
i = {1, . . . ,T}, j = {1, . . . , bk}.

2. Update xk+1, zk+1 and wk+1
i

end for

Output: (xR , zR).
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oracle complexity: assumptions

▷ All functions f1, . . . , fT and their derivatives are Lipschitz
continuous.

▷ Given Fk , the outputs of the stochastic oracle at each level i ,
G k+1
i and Jk+1

i , are independent.
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oracle complexity: assumptions

▷ For i ∈ {1, . . . ,T}, we have the following unbiasedness and
bounded moment/variance assumptions.

▷ Unbiased:

▷ E[Jk+1
i |Fk ] = ∇fi (w

k
i+1)

▷ E[G k+1
i |Fk ] = fi (w

k
i+1)

▷ Bounded second-moment/variances:

▷ E[∥G k+1
i − fi (w

k
i+1)∥2|Fk ] < ∞

▷ E[∥Jk+1
i −∇fi (w

k
i+1)∥2|Fk ] < ∞

▷ E[∥Jk+1
i ∥2|Fk ] < ∞
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oracle complexity: convergence criterion

▷ A point x̄ is a stationary point of (1) if

−∇F (x̄) ∈ NX (x̄)

where NX (x̄) stands for the normal cone of X at x̄ .

▷ Equivalently, a point (x̄ , z̄) is a stationary point of (1), if
ū = x̄ and z̄ = ∇F (x̄), where

ū = argmin
y∈X

{
⟨z̄ , y − x̄⟩+ 1

2
∥y − x̄∥2

}
.
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oracle complexity: convergence criterion

▷ Approximate stationary point:

−∇F (x̄) ∈ NX (x̄) + B(0,V (x̄ , z̄)),

where

V (x̄ , z̄) := ∥ū − x̄∥2 + ∥z̄ −∇F (x̄)∥2

is our Lyapunov function.

▷ A pair of points (x̄ , z̄) generated by the NASA algorithm is
called an expected ϵ-stationary pair, if

E[V (x̄ , z̄)] ≤ ϵ2,
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oracle complexity: convergence criterion

▷ Provides unified termination criterion for both the
unconstrained and constrained cases.

▷ When X = RdT , V (x̄ , z̄) provides an upper bound for the
∥∇F (x̄)∥2, because of the fact that ū − x̄ = z̄ for
unconstrained problems and hence we have

V (x̄ , z̄) = ∥z̄∥2 + ∥z̄ −∇F (x̄)∥2 ≥ 1

2
∥∇F (x̄)∥2.

▷ For the constrained case, V (x̄ , z̄) is also related to other
popular criterion like gradient mapping and proximal mapping.
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oracle complexity: main result

Theorem [BGN22]: Assume that the parameters β, bk and τk
are set respectively as:

β = O(
√
T ), bk = O(

√
N), τk =

1√
N
.

Then, we have

E[V (xR , zR)] ≤ OT

(
1√
N

)
.
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oracle complexity: remarks

▷ To find an ϵ-stationary point, the NASA requires OT (1/ϵ
4)

number of iterations.

▷ The total number of used samples is bounded by

N∑
k=1

bk = OT

(
1/ϵ6

)
.

▷ This bound is better than OT

(
1/ϵ(7+T )/2

)
obtained by Yang

et al. [2019] when T > 4.
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Multi-Level Linearized NASA (LiNASA)
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linearization step

▷ Recall the notation that wk
i stands for estimates of

yi = fi+1 ◦ · · · ◦ fT (x).

▷ Replace the update rule for wk+1
i with

wk+1
i = wk

i + Jk+1
i (wk+1

i+1 − wk
i+1) + τk(G

k+1
i − wk

i )

= (1− τk)w
k
i + τkG

k+1
i + Jk+1

i (wk+1
i+1 − wk

i+1),

▷ Instead of using the point estimates of fi ’s, we use their
stochastic linear approximate.
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linearization step

▷ Linearization technique was used as early as 1980s
by Ruszczyński [1987] to handle non-smooth stochastic
optimization for T = 1.

▷ More recently, Duchi and Ruan [2018] and Davis and
Drusvyatskiy [2019] used other types of linearization for
T = 1.
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oracle complexity: main result

Theorem [BGN22]: Assume that the parameters β, bk and τk
are set as:

β = O(
√
T ), bk = 1, τk =

1√
N
.

Then, we have

E[V (xR , zR)] ≤ OT

(
1√
N

)
.
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oracle complexity: remarks

▷ Result obtained without assuming boundedness of the feasible
set or any dependence of the parameter β on Lipschitz
constants.

▷ Indeed, β can be set to any positive number in the order of
O(

√
T ), and τk depends only on the total number of

iterations N.

▷ This makes LiNASA parameter-free and easy to implement.
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oracle complexity: remarks

▷ Note that LiNASA does not use a mini-batch of samples in
any iteration, i.e., bk = 1.

▷ The total sample complexity of LiNASA for finding an
ϵ-stationary point, is hence bounded by

OT (1/ϵ
4).

▷ The above rate is optimal (lower bounds proved for T = 1
by Drori and Shamir [2020]).
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Projection-Free LiNASA
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projection-free LiNASA

▷ Recall that in each iteration we solve:

uk = argmin
y∈X

{
⟨zk , y − xk⟩+ β

2
∥y − xk∥2

}
(2)

▷ What if the projection operation is costly ?

▷ Replace by Frank-Wolfe :

uk = Inexact Conditional Gradient(xk , zk , β, tk , δ).
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inexact conditional gradient (ICG) algorithm

Input: (x , z , β,M, δ)
Set w0 = x .
for t = 0, 1, 2, . . . ,M do
1. Find v t ∈ X with a quantity δ ≥ 0 such that

⟨z + β(w t − x), v t⟩ ≤ min
v∈X

⟨z + β(w t − x), v⟩+
βD2

X δ

t + 2
.

2. Set ut+1 = (1− µt)u
t + µtv

t

end for
Output: wK

▷ The method only assumes access to a Linear Minization
Oracle (LMO).
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oracle complexity: convergence criterion

▷ The FW-gap is defined as

gX (x̄ ,∇F (x̄)) := min
y∈X

⟨∇f (x̄), y − x̄⟩. (3)

▷ Along the trajectory of the algorithm, we show:

gX (x
k ,∇F (xk)) ≤ V (xk , zk).
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oracle complexity: main results

Theorem [XBG22]: Assume that the parameters β, bk and τk are
set as:

β = O(1), bk = 1, τk =
1√
N
, tk =

√
k .

Then, for the LiNASA+ICG algorithm, we have

E[V (xR , zR)] ≤ OT

(
1√
N

)
.
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oracle complexity: remarks

▷ The total sample complexity and number of calls to the LMO
for finding an ϵ-stationary point are bounded respectively by

OT (ϵ
−2) and OT (ϵ

−3).

▷ The method does not use mini-batches which are common in
the analysis of stochastic conditional gradient algorithms.
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special cases of T = 1, 2

▷ Linearization not necessary for T = 1, 2.

▷ While the above results are presented in expectation, one
could obtain high-probability results for T = 1, 2 with rates
depending on the confidence level δ as poly log(1/δ) under
sub-Gaussian tail assumptions.

▷ For the case of T ≥ 1, we need to derive a Freedman-type
martingale concentration inequality for product of random
matrices.
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Third (Recent) Result
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markov sampling

▷ Consider the case of T = 1:

min
x∈X

Eξ[G (x , ξ)]

▷ In each iteration k , instead of an iid sequence, we have
samples ξk which are drawn from a Markov Chain with
state-dependent transition kernel:

Pxk−1(ξk |ξk−1).

▷ Such a setting arises in strategic classification and
reinforcement learning.
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markov sampling

▷ Under certain drift condition on the Markov chain, the ASA
framework could be extended to this setting:

iid Markov

Unconstrained/Projection-Based O(ϵ−4) O(ϵ−5)

Projection-free (sample comp.) O(ϵ−2) O(ϵ−2.5)

Projection-free (LMO) O(ϵ−3) O(ϵ−5.5)

Table

▷ Furthermore, under the state-independent Markov chain
assumption, we get same rates as the iid setting!
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future work

▷ Stochastic Iterative algorithms are essentially multivariate
non-iid sequences (Martingale/Markov Chains/Time-series).

▷ Huge-literature in the statistics on uncertainty quantification,
e.g., online covariance estimation, online bootstrap.

▷ Some works for the case of T = 1 include Anastasiou et al.
[2019], Yu et al. [2021], Fang et al. [2018], Zhu et al. [2021].

▷ Future work: develop methods for T ≥ 1.
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Thank you!
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