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Outline

Problem
I Should simultaneously focus on both numerical and statistical

accuracy.
I Statistical accuracy: How well do the data capture the

problem we want to solve?
I Numerical accuracy: How quickly can we can compute an

estimator to (insert number) of digits?

Contributions

I We make a small contribution in this direction using proximal
methods.

I We provide theoretical support for early stopping of scaled
proximal methods.



Outline

Problem
I Should simultaneously focus on both numerical and statistical

accuracy.
I Statistical accuracy: How well do the data capture the

problem we want to solve?
I Numerical accuracy: How quickly can we can compute an

estimator to (insert number) of digits?

Contributions

I We make a small contribution in this direction using proximal
methods.

I We provide theoretical support for early stopping of scaled
proximal methods.



Parametric Estimation

I We have a parametric family of densities
{p(·|θ) : θ ∈ Θ ⊆ Rd}.

I Observe n independent copies X1, ...,Xn of a random vector
X ∼ p(·|θ0).

I Do not know θ0 and want to use X1, ...,Xn to estimate it.

Theorem (Cramer-Rao Bound)

Assume that the Fisher Information exists.

Iθ0 := Var

[
∂

∂θ
log p(X |θ)

∣∣∣∣
θ0

]
.

Then any unbiased estimator θ̂ of θ0 satisfies

Var
[
θ̂
]
� (nIθ0)−1.
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Parametric Estimation

We define the Maximum Likelihood Estimator as

θ̂MLE ∈ argmaxθ∈Θ
1

n

n∑
i=1

log p(Xi |θ).
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Parametric Estimation

We define the Maximum Likelihood Estimator as

θ̂MLE ∈ argminθ∈Θ Fn(θ).

Theorem (Fisher 1920s, Cramer 1946)

As the sample size n→∞, the maximum likelihood estimator is
unbiased. Its variance matches the Cramer-Rao bound. More
precisely,

θ̂MLE →D N(θ0, (nIθ0)−1)

where →D denotes convergence in distribution.

We can rewrite the conclusion of the theorem

√
n(θ̂MLE − θ0)→D N(0, I−1

θ0
)
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Parametric Estimation

“The justification through asymptotics appears to be the only
general justification of the method of maximum likelihood”
- A. W. van der Vaart, Asymptotic Statistics.

I In “perfect data” regime, MLE has strong supporting theory.

I But these results were developed in the 1920s and 1940s!

I No computers ⇒ limited ability to compute MLE.

I How was a respectable statistician supposed to use this
insight?



Enter Le Cam

Lucien Le Cam (1924-2000)



One Step Estimators

Theorem (Le Cam, 1956)

I Let θ̃init be an initial estimator of θ0, such that

√
n‖θ̃init − θ0‖ = OP(1).

I Some mild regularity conditions hold.

Then performing a single Newton step on the objective function
Fn, from starting point θ̃init , yields an estimator θ̂ose which is
asymptotically equivalent to θ̂MLE .

This estimator

θ̂ose := θ̃init −∇2Fn(θ̃init)
−1∇F (θ̃init)

is called the one-step estimator.



With Great Power...

I Starting within M n−1/2 of θ̂MLE , for some constant M
satisfies the condition on θ̃init in the theorem.

I This gives us “wiggle room” in the optimization of n−1/2,
where n is the sample size.

I One step of Newton’s method is sufficient for an
asymptotically optimal estimator (unbiased with variance
equal to Cramer-Rao).

In practice this gave statisticians license to optimize poorly.

1. Choose starting point

2. Run a few iterations of Newton’s method (by hand!?)

3. Cite Le Cam’s theory suggesting this is good enough.
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Modern Take

Why is one-step estimation relevant in the computer age?

1. Nonlinear optimization problems are still solved
approximately, to a pre-specified numerical tolerance.

I Where does numerical tolerance outpace statistical error?

I One-step estimators link these two concepts by taking θ̃init as
penultimate value of Newton’s method.

2. Maximum likelihood estimation with local maximizers.

If one has access to any
√
n-consistent estimator θ̃init (not

necessarily MLE) of θ, the one-step estimator from this
starting point is asymptotically efficient under some minimal
moment conditions.



Modern Take

3. One-step estimation has been extended in a number of different
directions since its inception. Primarily in statistics, as opposed to
optimization, community.

I J. Fan and J. Chen. One-step local quasi-likelihood
estimation. JRSSB. 1999.

I H. Zou and R. Li. One-step estimates in noncave penalized
likelihood models. Annals of Statistics. 2008

I M. Taddy. One-step estimator paths for concave
regularization. JCGS. 2017

I C. Huang and X. Huo. A distributed one-step estimator.
Mathematical Programming. 2019.



Modern Take

4. Early stopping results have also been discussed is machine
learning. The setup there is:

I Your model is overparametrized, so that your minimizer is not
actually a good estimator.

I Early stopping can help avoid overfitting.

Here, we assume that the minimizer of your objective is a good
estimator. Otherwise you might consider reformulating your
objective, instead of avoiding the minimizer in your iterative
method.



Only Newton’s Method?

You may want to scale this beyond Newton’s method.

Can we use gradient descent in Le Cam’s theory?

Answer: No.
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Counterexample

We estimate the population mean from multivariate normal
observations

X ∼ N

((
0
0

)
,

(
100 0

0 1

))
.

Take starting point θ̃ ∼ U
(
[−n−1/2, 0]× [−n−1/2, 0]

)
The one-step gradient descent estimator is biased.

Independent of n, this estimator underestimates the first
coordinate of the mean



Counterexample
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Only Unregularized Problems?

Regularized estimation problems are extremely important in
statistical learning.

Can one-step estimation be extended to regularized problems?

Answer: Yes.



Composite Model & Proximal Methods

min
θ∈Θ

F (θ) + G (θ)

is often solved with the following, called proximal gradient descent

Initiate θ0 and iterate the following for appropriate step lengths γk .

1. φk = θk − γk∇F (θk)

2. θk+1 ∈ argminθ∈Θ G (θ) + 1
2γk
‖θ − φk‖2

2.

The proximal operator of G with parameter γ is

proxG ,γ(y) = argminθ∈Θ G (θ) +
1

2γ
‖θ − y‖2

2.

So the proximal gradient method consists of applying a
gradient step (in F ) and proximal step (in G ) for each iteration.
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Scaled Proximal Gradient

Proximal gradient has an extension called Scaled Proximal
Gradient for scaling matrices Ck � 0.

Prox Gradient
Iterate the following:

1. Gradient Step

φk = θk − γk∇F (θk)

2. Proximal Step

θk+1 ∈ argminθ∈Θ

G (θ) +
1

2γk
‖θ − φk‖2

2

Scaled Prox Gradient
Iterate the following:

1. Newton Step

φk = θk − C−1
k ∇F (θk)

2. Scaled Proximal Step

θk+1 ∈ argminθ∈Θ

G (θ) +
1

2
‖θ − φk‖2

Ck

Recall that ‖y‖2
C = yTCy is the weighted euclidean norm



Prox Gradient vs Scaled Prox Gradient

Prox Gradient

I (Often) Closed form prox

I Linear convergence rate

Scaled Prox Gradient

I Rarely closed form prox

I Superlinear convergence rate

Scaled Prox Gradient is used by reputable packages such as
glmnet, newglmnet, QUIC (QUadratic Inverse Covariance
estimation).

see Lee, Sun & Saunders, 2014



Main Contribution

Theorem (Bassett & Deride, ‘21)

Assume we have the composite model, and form estimator

θ̂M ∈ argminθ∈Θ Fn(θ) + Gn(θ)

where Fn is negative log likelihood and Gn is a regularizer. If

I θ̃init is an initial estimator such that
√
n
∥∥∥θ̂M − θ̃init∥∥∥ = OP(1).

I Gn(θ) is convex.

I The scaling Cn is � 0 and C−1
n Iθ0 →P I.∗

I Some mild regularity conditions hold.

Then θ̂ose , the one-step estimator with scaled proximal gradient, is
asymptotically equivalent to θ̂M .

That is,
√
n(θ̂ − θ̂M)→ 0 in probability.



Interpretation

When solving penalized log-likelihood with scaled proximal
gradient,

Numerical error should scale like n−1/2

in order to respect the statistical nature of the problem

Theorem
If Fn has Lipschitz continuous gradient, then

√
n‖θ̂ose − θ̃init‖ = OP(1)⇒

√
n‖θ̂init − θ̂M‖ = OP(1).

Thus, terminating scaled proximal gradient descent when the
iterates change less than 1/

√
n gives the same asymptotic

distribution of θ̂M .



Application: Low Rank Logistic Regression

I Email-Eu-core data set: Emails sent between N members of
an academic department.

I For each of T time steps, receive observations

Xi ,i ,t =

{
1 Individual i sent individual j an email in time t

0 Otherwise.

I Goal: Estimate Pi ,j , probability of communication between
individuals i and j . Assumed stationary.

I Assumptions: log
(

P
1−P

)
is low rank1, i.e. individuals have

similar communication patterns across all members of the
department.

1Operations here are elementwise on N × N matrix of P communication
probabilities



Application: Low Rank Logistic Regression

I Let θ = log P
1−P .

I Solve nuclear norm penalized logistic regression.

I Nuclear norm ‖ · ‖∗ is the `1 norm of a matrix’s singular
values. This penalty encourages low rank solutions.

min
θ∈RN×N

∑
i ,j∈[N]×[N]

{
log(exp(θi ,j) + 1)− X i ,jθi ,j

}
+ λ‖θ‖∗.

I Terminate scaled proximal gradient descent when step length
between iterates is less than T−1/2. This guarantees θ̂ose and
θ̂M are asymptotically equivalent.



Application: Low Rank Logistic Regression
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(Scaled) Proximal Descent

We’ve discussed one-step estimation in scaled proximal gradient
descent for the regularized problem

θ̂M ∈ argminθ∈Θ Fn(θ) + Gn(θ).

We’ll next discuss scaled proximal descent applied to the problem

θ̂M ∈ argminθ∈Θ Fn(θ).

θ̂ ∈ prox
Fn,Cn

(θ̃init) = argminθ∈Θ Fn(θ) +
1

2

∥∥∥θ − θ̃init∥∥∥2

Cn

.



(Scaled) Proximal Descent

We have a similar result for scaled proximal descent, where we
have the (unregularized) maximum likelihood estimator

θ̂M ∈ argminθ∈Θ Fn(θ)

and we form the one-step estimator through the scaled proximal
operator:

θ̂ose ∈ argminθ∈Θ Fn(θ) +
1

2
‖θ − θ̃init‖2

Cn

Theorem (Bassett & Deride, ‘21)

If: I
√
n‖θ̃init − θ̂M‖ = OP(1)

I λmax (Cn) = oP(1)

I Scaled prox is Lipschitz continuous.∗

Then θ̂ose is asymptotically equivalent to θ̂M .



Interpretation as a Smoother
Quasi-Newton methods are usually cheaper per iteration and have
same convergence rate as scaled proximal descent.

So why would we use scaled proximal descent?

Answer: This result permits smoothing of a log-likelihood.

Let eC give the scaled Moreau envelope with scaling C

eC f (x) = inf
w∈Rd

{
f (w) +

1

2
‖x − w‖2

C

}
.

The Moreau envelope smooths a function via infimal convolution.

Fact: Scaled proximal gradient descent is Quasi-Newton Method
applied to the smoothed function.

xk+1 = xk − C−1∇eC f (x)



Example: Cauchy Likelihood

Goal: Estimate location parameter θ from a Cauchy distributed
sample.

X1, ...,Xn ∼iid π−1(1 + (x − θ)2)−1.

I Sample mean has distribution as the Xi . Very inefficient
(undefined mean and variance).

I Maximum likelihood estimator is asymptotically efficient.

I But there are local maximizers of likelihood.

I Global maximizer tends to be well-separated.



Example: Cauchy Likelihood
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Cauchy negative log likelihood for a sample of 100 observations.



Example: Cauchy Likelihood with Laplacian Prior

Let’s add an `1 regularizer to encourage sparse solutions.

We return to the setting of scaled proximal gradient descent.

Iterations of scaled proximal gradient descent can be written.

xk+1 = argminx

{
f (xk) +∇f (xk)T (x − xk) + g(x) +

1

2
‖θ − θk‖2

C

}
= argminx eC︸︷︷︸

Moreau Envelope

(
f (xk) +∇f (xk)T (x − xk) + g(x)

)
Therefore our scaled proximal descent results also have a statistical
smoothing interpretation, but here it is a local one.



Example: Cauchy Likelihood with Laplacian Prior
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Ongoing Work: Finite Sample Extensions
One-step estimation results depend critically on the theory of local
asymptotic normality.

Local asymptotic normality (informally): The log-likelihood
function derived from n iid samples can be locally approximated by
a quadratic function. The approximation error converges to 0 in
probability.

Finite sample results for one-step estimators require finite sample
extensions of local asymptotic normality.

Such extensions exist, but they do not extend beyond the
sub-gaussian setting. Example include:

I V. Spokoiny. Parametric Estimation. Finite Sample Theory.
Annals of Statistics. 2012.

I S. Boucheron and P. Massart. A high-dimensional Wilks
Phenomenon. Probability Theory and Related Fields. 2011.



Conclusion

I Le Cam worked on early stopping results for Newton’s method
applied to MLE.

I We extend this insight to penalized and constrained problems
by considering Scaled Proximal Gradient Descent and
Scaled Proximal Descent.

I Scaled Proximal Methods work similarly to Newton–a
one-step estimator from a starting point within n−1/2 of the
minimum behaves like the minimum.

I When loss functions are well behaved these results inform
stopping tolerance, by using the penulimate iteration as θ̃init .

I Applies to many problems where we want to build structured
estimates from data.
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