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Design under uncertainty

“solum certum
nihil esse certi”

Plinius the old,
Naturalis Historice, 77 d.C

» Modern optimization problems are characterized by an imperfect knowledge of the design
environment

» Coping in an efficient way with uncertainty represents a key issue
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Uncertainty in control systems: Robust confrol

» Inthe modern control era, control engineers have started dealing explicitely with uncertainty
» The idea of robust control has been playing a fundamental role

» A robust controller garantees performance satisfaction for all possible values of the uncertainty

uncertainty 2\
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Robust control

» Inthe modern control era, control engineers have started dealing explicitely with uncertainty
» The idea of robust control became fundamental

» A robust controller garantees performance satisfaction for all possible values of the uncertainty

» Or, said differently, the controller is designed to cope with SP/}T‘:\)I_\Y/\[:\\S[IQ\’\ VS. PES{\S}{‘;\\(\\]ST\C

YEAH,
PROBABLY.

the worst-case scenario

| WILL
DEFEAT

» The resulting design will be inevitably conservative v
ouY

» This is a pessimistic viewpoint
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An optimistic viewpoint to control: probabilistic robustness

@ iar

“don’t assume the worst-case scenario: it’s
emotionally draining and probably won't
happen anyway”

>

[Tempo, Bai, FD(1997), Calafiore, Campi(2006), Campi,Garatti(2008),
Calafiore, FD, Tempo(2011)]

Probabilistic robustness guarantees that the solution is viable (feasible)
IN Most cases

In systems & control terms, this tfranslates in accepting some risk that the
performance may be violated

Howewer, the probabilistic formulation is in general even harder
The main tool: randomized algorithms
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Optimization under uncertainty

» Consider an uncertain optimization problem, which amounts at minimizing a linear function
under uncertain constraints

» Robust optimization (RO)
minc' 6

s.t. f(O,w) <0 YweW

— = "0

» Chance-constrained optimization (CCO)
minc' 6
s.t. Prw{f(0,w) £0} <e h

the parameter ¢ is called the violation probability

minE|f(0,w)]

’
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The problem: CCO with linear inequalities

» Forsimplicity, we will deal here with a set of 1y uncertain linear inequalities

F(w)d < g(w)

» with

i (w) g1(w)
Flw)y=1 + | eR"™, gw) =] @ | eR™,

ne (W) | gne (W0)_

» Due to the random nature of the uncertainty each readlization of w corresponds to @
different set of linear inequalities, giving raise to a corresponding set

X(w)={0€0 : Fw)d <g(w) }




The chance constrained set

» The probability of violation of a given design 0 is
Viol(9) = PriF(w)f £ g(w) }

» The chance constrained set of probability € is defined as

X.={0€0 : Viol) <e} e-CCS

» Notice that we consider here joint chance constraints, as opposite to individual chance
constraints of the form

pext = {ee@ Priy { fo(w) 0 < go(w)} > 1—55}, =

; g _ s =, 4 B% 5 W : ;
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The chance constrained set

» The e-CCS isin general nonconvex
[Shapiro, Dentcheva, and Ruszczynskl(QOM)]

Example 1 (Example of nonconvex e-CCS) To il-
lustrate these inherent difficulties, we consider the fol- -
lowing three-dimensional example (ng = 3) with w =
{w1,ws}, where the first uncertainty wy € R3 is a three-
dimensional normal-distributed random vector with zero
mean and covariance matric

4.5 2.26 14
¥=1226 358194 |,
1.4 1.94 2.19

and the second uncertainty we € R3 is a three-
dimensional random vector whose elements are uni-
formly distributed in the interval [0,1]. The set of viable

design parameters is given by ny = 4 uncertain linear S
inequalities of the form g e
s =
T \\_\\\ it -
Fw)d <1, F(w)=|w wy 2wy —ws) w}]| e ——
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Qur problem

Problem (=-CCS approximation) Given the set of linear inequalities
F(w)f < g(w)

and a violation parameter €, find an inner approximation of the set X¢
The approximation should be:

i) simple enough

ii) easily computable

Note that we are interested in approximating the € -CCS per se,
not in approximating the solution of a CC optimization problem
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Motivations (from systems and control) Wh‘) ?

» Why are we interested in directly approximating the CSS¢

» Stochastic Model Predictive Control: in SMPC we need to solve — online, and so very fast —
iterative optimization problems

» We can reformulate the problem in such a way that, at each step, we solve a problem with
different cost functions (depending on your current state) subject to the same CSS

» If we have “nice” approximations of CSS, we can have efficient algorithms

» Probabilistic set-membership identification: in SMI the goal is to identify the set of systems
parameters which are compatible with the measurements (the so-called feasible set)

» In probabilistic SMI, we look for a probabilistic description of the feasibile set under probabilistic
assumptions on the noise

» The probabilistic feasible set is exactly a CSS
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Approaches fo CCO

» Chance constrained optimization
=3
» Exact techniques: special cases where e-CCS is convex and CCO problem admits a unique solution
» individual chance constraints withw Gaussiaon [Kataoka(1963)]
» log-concave distribution [Prékopa(1995), Prékopa(1971)]
» Robust techniques: deterministic conditions to construct aset X C X,
» Chebyshev-like inequalities [Hewing and Zeilinger(2018), Yan et al.(2018)]
» Robust optimization [Ben-Tal and Nemirovski(1998), Nemirovski and Shapiro(2006)]
» Conditional Value at Risk (CVaR) [Chen et al.(2010)]
» Polynomial moments relaxations [Jasour et al.(2015), Lasserre(2017)]

» Sample-based methods

» discussed next...

%
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Other Safe

e i Approximation
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Pu Theory Smphng & Guratti, 2016)
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Geng Xinbo, Xie Le, "Data-driven decision making in power systems with probabilistic guarantees: Theory and applications of chance-constrained optimization”, Ann. Reviews in Control
5 / ~ ;vr“" /i X ;‘-’-

@ |t ; ',xi_mqfion

: ii."xiE:rice, May 2022 1 6



Sample-based techniques: scenario approach

» We have N iid samples of the uncertainty

fw®,w®, . W)
» To each sample we associate the following sampled set (scenario)
X(w(i)) ={60cO : F(w(i))Q < g(w(i)) }

» The scenario approach considers the CCO problem and approximates its solution through
the following scenario problem

0. = argmin J(0)
subject to 6 € X(w'?),i € [N].

:_/.‘
/d
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Violation probability of scenario B(k;N,@ii( VYoo

» |If Jis convex, we have that
Priw~y {Viol(0.) > e} < B(ng — 1; N, ¢)

» In asense, we are approximating the «-CCS by the N-sampled seft

X(w(i))
N
Xy = [ X(w™)
i=1 AN
\
/ 9:0
P

» But, the probabilistic property above holds only for the optfimum Hzcof the scenario program
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Problem: sample-based approximations of CCS

» The results of SO are valid only for the optimal solution, that is we know that

0. € X,

but we don’t know the N-sampled set is a good approximation of the e-CCS, i.e. if
XN ~ Xg?

» Again, this is exactly the problem addressed in this talk:

Problem (=-CCS approximation) Given the set of linear inequalities
F(w)f < g(w)}

and a violation parameter €, find an inner approximation of the set X¢
The approximation should be: i) simple enough, ii) easily computable

pro P
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Learning-theory bound for CCS

» Given probabilistic levels § € (0,1),e € (0,0.14) if N > N7, with

4.1 21.64 8
€ E

» then
PFWN {XN g Xs} Z 1 _5
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SMPC for automated rendezvous T v——

Application to Autonomous Space Maneuvers

» We consider systems of the form

Trai1 = A(qr)rr + B(qr)ur + By (qr)wg

» Our sample-based approach guarantees robust feasibility, aymptofic convergence In
probability, efficient online implementation

» The approach is successfully applied to the development of flyable SMPC schemes for
automated rendezvous and proximity operations between spacecraft

[
| INFEASIBLE region

i i 4
Xtarget )/ r)/
S el B < e
I FEASIBLE region
I
Ztarget i
\
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SMPC for automated rendezvous Jr—

Application to Autonomous Space Maneuvers

» The developed techniques were tested on a testbed at NPS

Naval Postgraduate School,
Monterey, CA
POSEIDYN Air Bearing Testbed

DRAESTANTIA PER SCIENT] 4
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LT approximations — pro and cons

» The LT approaches based on sampled approximations have proved very effective

» In SMPC, the possibility of performing the “heavy” computations offline allowed to derive
computationally efficient implementations

Also, one can perform ofline “constraint pruning” to lower the number of constraints

» However, in general, the number of constraints which we have to deal with may sfill be
prohibitive

» even for a moderately sized MPC problem with 5 states, 2 inputs, prediction horizon T = 10, simple
interval constraints on states and inputs, and for probabilistic parameters € = 0.05, § = 10—6, we
get more than 1.6 million linear inequalities (before pruning)

» We would like to have a method which is "tunable”, depending on our computational
power

» This method we propose is based on probabilistic scaling
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Probabllistic scaling
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Probabillistic scaling X,

» AIM: to approximate the e-CCS
Xe={0e€0 : Viol(#) <e}

» IDEA: start with simple approximating sets (Scalable SAS)

» We scale the set so that it constitutes a good approximation of the CCS Xg

sk
» Thatis, we look for an optimal scaling factory™ so that S(v7)

Pr{S(v*) CX.} >1-3

RN
e Y
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Probabillistic scaling

» Assume a Scalable SAS S(7)is available

» We propose a sample-based procedure: we assume that Nry iid samples from Pryy are
available

{w® .. w0y

» Based on these, we show how to obtain a scalary such that

Pr{S(7) CX.)>1-4
W~

pro P
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Scaling factor

Definition (Scaling factor): Given a Scalable SAS S(7), with center . and shape S,
we define the scaling factor of S(~)relative to the realization w € W as

v(w) = max -y otherwise.

S(v) CX(w)

{ 0 if 0, & X(w)

That is, v(w)is the maximal scaling that can be applied
to the SAS around its center so that S(7v) € X(w)

‘ S(7)
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Probabillistic scaling computation

Algorithm 1 Probabilistic SAS Scaling

1: Given a candidate Scalable SAS S(7), and probabil-
ity levels € and 9, choose

N = Hlnl and 1= [%J : (15)

c S 9 Theorem:

2: Draw NV, samples of the uncertainty w®, . wBy), » W@}; {S() cXp>1-96

3: fori=1to N, do
4: Solve the optimization problem
; =  Inax . 16
L S(v) EX(w®) 1 8
5: end for
6: Return ¥ = y14,.n,, the (1 + r)-th smallest value
of Yi -

abbene - Sampling-based methods for Cont}rol éer’roin systems.. .
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Candidate SAS: Sampled-polytope

» The first natural candidate is clearly an N-sampled set
» Draw /V g design samples {u~}(1)7 o 7@(]\75)} and build

Ngs
Xng = [ ) X(@Y)
j=1

» However, in this case, the number Ng is not given by the LT bound, but it is a design
parameter

» We could choose Ng as the number of constraints compatible with our computational power

» E.g..in SMPC, it could be the number of constraints we can process online in one step

» The center of the set may be chosen as the Chebichev center (or the analytic center in
case of linear inequalities)

: . “»?&;‘Erice, May 2022




Example

0.3
Probabilistic scaling approximation of the e-CCS
Scaling procedure applied to a sampled-polytope )
with Vg = 100

0.1 -
Initial set is depicted in red, the scaled in green S
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Example

0.3
Probabilistic scaling approximation of the e-CCS
. : 0.2
Scaling procedure applied to a sampled-polytope
with Vg = 1,000
0.1 -
Initial set is depicted in red, the scaled in green 5
» "
-0.1 -
-0.2
-0.3
- et -0.1 0 0
v = 1.2389 0.1 0.2
X2 Xl
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Example

Probabilistic scaling approximation of the e-CCS Wi
Approximation obtained by direct application of 0.2 -
the LT bound (52,044 linear inequalities) .1
Note that, in this case, to avoid out-of-memory errors,
A pruning procedure was necessary < 0
-0.1 4
-0.2 -
-0.3 -~
on 0
0.1 0.2
X
X2 1
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Candidate SAS: £,-norm based sets

» We define norm-based SAS of the form

Se, (7) = 0. © YHBS

where ]B; is the unit ballin the £,-norm in R* with s > ng and H € R"?*%is a shape martrix

ellipsoid parallelotope zonotope
p:278:n9:37 p:1782n9:37 p:oo,S:lO,ng:?),
H=H"*~0 H=HT»0 H e R'%?

S B R
e LK
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¢,-norm based sets — scaling factor computation

Theorem 2 (Scaling factor for norm-based SAS)
Given a norm-based SAS S(v) as in (20), and a realiza-
tion w € W, the scaling factor v(w) can be computed as

Y(w) = min ye(w),
KE[’ne]

with ve(w), £ € [ng], given by X(w)
(0 if T(w) <0, @ S(v)

vo(w) ={ o if Te(w) =0 and py(w) =0,

\ ZEZ; if Te(w) > 0 and pg(w) > 0,

wheree(w) = go(w)—fF (w)0. and pg(w) = ||[HT fo(w)
with || - ||p= being the dual norm of || - ||,.

p*

§ \Erlce May 2022




Construction of a candidate £,-norm based set

» We can start again from a (design) N-sampled set Xy
» We compute the largest norm-based set contained in X

Vol (H
max ol,(H)

subject to 0. & HB, C X

» This problem is equivalent to ><
—Vol,,(H)

min
0. H

st SE@)0e+ [|HT fo(@9) | pr — go(@¥)) <0,
gG[TLg], ]E[NS] —

<
D
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S¢, SAS
Ng = 100 Ng = 1,000

0.3
0.2

0.1 -

-0.1
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Se_ SAS

Ng =100 Ng = 1,000

0.3 5

0.2 5

0.1

-0.1 §
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Application: UAVY SMPC tracking control

» The selected application involves a fixed-wing UAV performing a monitoring mission over a
sloped Dolcetto vineyard at Carpeneto, Alessandria, Italy (44°40° 55.6" ° N, 837" 28.1°
4 E)

» The main objective is to provide proper control capabilities to the UAV to guarantee a fixed

relative altifude with respect to the terrain of 150 m while following the desired optimal path
defined by 1 ' ' .

/ A l};v.——;» - . \ % \ y ;
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Simulation: UAV SMPC fracking control

» Prediction horizon T=15
» Offline-sampling approach: 20,604 constraints

» T-norm based approach: 10/ constraints

MAXIMUM AND AVERAGE ONLINE COMPUTATIONAL COST.

4.9482("

N temaxyg teavepg  temaxpg  teavepg
4.948 ¢

I 2.0959 0.4178 0.0966 0.0087
2 29411 0.5626 0.7221 0.0190
3 2.1497 0.5434 0.2628 0.0086 AR

4.9476

4.9474 /

4.9472 ‘ 49478 4 / A

4698 4.7 4702 4704 4.706 47045 4705 47055  4.706
E[m] x10° E [m] x10°

A
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A simple but interesting example

» Suppose that we generate N random linear
constraints tangent to points drawn from a
uniform probability distribution on the surface of
the unit hypersphere

» Suppose that the unit hypersphere constitutes
an initial approximation

» Itis possible to scale this initial geometry around
its center (the origin) to obtain an inner
approximation §(v) = x. @& S of X, with a
given level of confidence

» However, this scaling scheme will always provide
as a result the unit hypersphere

» On the other hand, the true X, fore = 0.15 s
larger

Nabbene - Sampling-based methods for.éontrol 1 y = E> e 7. O/ .
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Enlargement factor

» For this simple case, the radius corresponding to the CCS can be computed in an exact
way using some transcendental functions

» The resulting radius turns out to be significantly larger than one

4 - T T T T T T T
dim=2
rg dim=3
dim=10
3.5 dim=20 ]
3r |
25 7
2F "
15 T
1 1 1 ! 1 i i 1

0 0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 0.09 0.1

s
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Pack-based strategies

» We show that a better scaling may be computed using pack-based

stfrategies

» The ideais illustrated in the figure 3

» The linear constraints divide the plane into 2
regions with different number of violated 3
constraints 9

» We notice that larger scale factors can be ! ] 5
obtained if one scales the unit-circle until it
touches the green regions.

» More generally, if only regions in which more ]
than a given number of constraints are violated 1
are considered, then larger scale factors could

be contemplated. \G/
» However, this approach has to be designed in

such a way that probabilistic guarantees are
given
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Pack-based strategies

» Pack-based strategies proved very powerful, but with a significative increase in
computational cost

» This is not surprising, since we are aiming at approximating an NP-hard problem
» We have a “nice” tradeoff between conservativeness/computational cost
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