Stability and Sample-based Approximations of Composite Stochastic Optimization Problems

Darinka Dentcheva

This work is supported by the Office of Naval Research under grant no. N00014-21-1-2161.

Robustness and Resilience in Stochastic Optimization and Statistical Learning: Mathematical Foundations

May 23, 2022

Composite functionals: definitions and framework

- **2** Empirical estimators
- **3** Smoothed estimators
- 4 Wavelet-based estimator
- **5** Stability of optimization problems with composite functionals with respect to measure perturbations
- **6** Bias in Sample-based Optimization

Motivation

$$\varrho[X] = \mathbb{E}\Big[f_1\Big(\mathbb{E}\big[f_2\big(\mathbb{E}[\cdots f_k(\mathbb{E}[f_{k+1}(X)], X)] \cdots, X\big)\big], X\Big)\Big],$$

X is an integrable random vector with values in $\mathcal{X} \subseteq \mathbb{R}^m$ and probability distribution *P*. $f_j : \mathbb{R}^{m_j} \times \mathbb{R}^m \to \mathbb{R}^{m_{j-1}}, j = 1, ..., k$, with $m_0 = 1$ and $f_{k+1} : \mathbb{R}^m \to \mathbb{R}^{m_k}$.

Example

The mean-semi-deviation of order $p \ge 1$ for a random variable *X* representing a loss is

$$\varrho[X] = \mathbb{E}[X] + \kappa \left[\mathbb{E}\left[\left(\max\{0, X - \mathbb{E}[X]\} \right)^p \right] \right]^{\frac{1}{p}},$$

where $\kappa \in [0, 1]$. We have k = 2, m = 1, and

$$f_1(\eta_1, x) = x + \kappa \eta_1^{\frac{1}{p}},$$

$$f_2(\eta_2, x) = \left[\max\{0, x - \eta_2\}\right]^p,$$

$$f_3(x) = x.$$

Darinka Dentcheva

Sample-based Composite Optimization

Composite functionals

$$\varrho[X] = \mathbb{E}[f_1(\mathbb{E}[f_2(\mathbb{E}[\dots f_k(\mathbb{E}[f_{k+1}(X)], X)] \dots, X)], X)]$$

Risk measures representable as optimal values of composite functionals

$$\theta[X] = \min_{u \in U} f_1(u, \mathbb{E}[f_2(u, X)])$$

$$\mathscr{S}[X] = \operatorname{argmin}_{u \in U} f_1(u, \mathbb{E}[f_2(u, X)])$$

where $U \subset \mathbb{R}^d$ is a nonempty closed set

Optimized composite functionals

$$\vartheta[X] = \min_{u \in U} \varrho(u, X)$$

$$\varrho[u, X] = \mathbb{E} \left[f_1 \left(u, \mathbb{E}[f_2(u, \mathbb{E}[\dots f_k(u, \mathbb{E}[f_{k+1}(u, X)], X)] \dots, X)], X \right) \right]$$

where $U \subset \mathbb{R}^d$ is a nonempty closed set.

Goal

- asymptotic behavior of sample based optimization problems with composite functionals;
- stability with respect to measure perturbations;
- bias of the estimators.

References

- D. Dentcheva, Y. Lin, and S. Penev, "Stability and Sample-based Approximations of Composite Stochastic Optimization Problems," to appear in *Operations Research* (2022).
- 2 D.Dentcheva, Y. Lin, "Bias Reduction in Sample-Based Optimization," *SIAM J. Optimization* 32.1 (2022): 130-151.
- **3** D. Dentcheva, S. Penev, A. Ruszczyński: Statistical estimation of composite risk functionals and risk optimization problems, *Annals of the Institute of Statistical Mathematics* 2017.

For a measure $Q \in \mathcal{P}(\mathcal{X})$, we define

$$\bar{f}_{j}^{Q}(u,\eta_{j}) = \int_{\mathcal{X}} f_{j}(u,\eta_{j},x) Q(dx), \quad j = 1, \cdots, k$$

$$\bar{f}_{k+1}^{Q}(u) = \int_{\mathcal{X}} f_{k+1}(u,x) Q(dx)$$
(1)

Assumption: A compact set \mathcal{U} exists such that $S \subset \text{int } \mathcal{U} \subset U$. Compact convex sets $I_1 \subset \mathbb{R}^{m_1}, \dots, I_k \subset \mathbb{R}^{m_k}$ are such that

$$\bar{f}_{j+1}^{P}(\mathcal{U}, I_{j+1}) \subset \operatorname{int}(I_{j}), \quad \bar{f}_{k+1}^{P}(\mathcal{U}) \subset \operatorname{int}(I_{k});$$
$$I = I_{1} \times I_{2} \times \cdots I_{k}, \quad d = m_{0} + m_{1} + \cdots + m_{k}.$$

Approach: Embed the functions into the space

$$\mathcal{H} = \mathcal{C}_1(\mathcal{U} \times I_1) \times \mathcal{C}_{m_1}(\mathcal{U} \times I_2) \times \cdots \times \mathcal{C}_{m_{k-1}}(\mathcal{U} \times I_k) \times \mathcal{C}_{m_k}(\mathcal{U})$$

where $\mathcal{C}_{m_{j-1}}$ is the space of $\mathbb{R}^{m_{j-1}}$ -valued continuous function on $\mathcal{U} \times I_j$. We analyze the vector function $\mathbf{\bar{f}}^{(Q^1..Q^{k+1})} \in \mathcal{H}$:

$$\bar{\mathbf{f}}^{(Q^1..Q^{k+1})}(u,\eta) = (\bar{f}_1^{Q^1}(u,\eta_1), \bar{f}_2^{Q^2}(u,\eta_2), \cdots, \bar{f}_k^{Q^k}(u,\eta_k), \bar{f}_{k+1}^{Q^{k+1}}(u))^\top$$

Given $\{X_i\}_{i \ge 1}$ i.i.d random variables with measure *P*, let P_N be the empirical measure.

The empirical estimators

$$\begin{split} \varrho_{E}^{(N)}[u,X] &= \sum_{i_{0}=1}^{N} \frac{1}{N} \Big[f_{1}(u,\sum_{i_{1}=1}^{N} \frac{1}{N} \Big[f_{2}(u,\sum_{i_{2}=1}^{N} \frac{1}{N} \Big[\cdots \\ f_{k} \Big(u,\sum_{i_{k}=1}^{N} \frac{1}{N} f_{k+1}(u,X_{i_{k}}), X_{i_{k-1}} \Big) \Big] \cdots, X_{i_{1}}) \Big], X_{i_{0}}) \Big] \\ \vartheta_{E}^{(N)}[X] &= \min_{u \in U} \varrho_{E}^{(N)}[u,X] \\ S_{E}^{(N)}[X] &= \big\{ u \in \mathcal{U} : \vartheta_{E}^{(N)} = \varrho_{E}^{(N)} \big\} \end{split}$$

We use the entire sample for estimating each expectation

Strong Law of Large Numbers

For two sets, $A, B \subset \mathbb{R}^n$, the one-sided distance of A to B is

$$d(A, B) = \sup_{x \in A} d(x, B) = \sup_{x \in A} \inf_{y \in B} ||x - y||.$$

The Pompeiu-Hausdorff distance between the sets is defined as

$$\mathsf{D}(A, B) = \max \left\{ \mathsf{d}(A, B), \mathsf{d}(B, A) \right\}$$

Assume f_j(u, η_j, ·), j = 1, ..., k, and f_{k+1}(u, ·) are uniformly bounded for all u ∈ U and for all η_j ∈ I_j by a P-integrable function g : ℝ^m → ℝ.

Suppose $S_E^{(N)}[X] \neq \emptyset$ for *N* large enough.

Then
$$\varrho_E^{(N)}[u, X] \xrightarrow[N \to \infty]{a.s.} \varrho[u, X]$$
 for every $u \in \mathcal{U}$,
 $\vartheta_E^{(N)} \xrightarrow[N \to \infty]{a.s.} \vartheta$, and $d(S_E^{(N)}, S) \xrightarrow[N \to \infty]{a.s.} 0$.
If the true problem has a unique solution, then $D(S_E^{(N)}, S) \xrightarrow[N \to \infty]{a.s.} 0$.

CLT for optimized composite risk functionals

Given a point $\hat{u} \in \mathcal{U}$, we define

$$\begin{split} \bar{f}_{k+1}^{P}(u) &= \int_{\mathcal{X}} f_{k+1}(u, x) P(dx), \quad \mu_{k+1} = \bar{f}_{k+1}^{P}(\hat{u}) \\ \bar{f}_{j}^{P}(u, \eta_{j}) &= \int_{\mathcal{X}} f_{j}(u, \eta_{j}, x) P(dx), \quad j = 1, \dots, k, \\ \mu_{j} &= \bar{f}_{j}^{P}(\hat{u}, \mu_{j+1}), \quad j = 1, \dots, k; \\ \tilde{\mathcal{H}} &= \mathcal{C}_{1}^{(0,1)}(U \times I_{1}) \times \mathcal{C}_{m_{1}}^{(0,1)}(U \times I_{2}) \times \dots \mathcal{C}_{m_{k-1}}^{(0,1)}(U \times I_{k}) \times \mathcal{C}_{m_{k}}(U), \end{split}$$

where $\mathcal{C}_{m_{j-1}}^{(0,1)}(U \times I_j)$ is the space of $\mathbb{R}^{m_{j-1}}$ -valued continuous functions on $U \times I_j$, which are differentiable with respect to the second argument with continuous derivatives on $U \times I_j$.

The Jacobian of $f_j(u, \eta_j, x)$ w.r.t. the second argument is denoted $f'_j(u, \eta_j, x)$. For every direction $d \in \tilde{\mathcal{H}}$, we define recursively:

$$\xi_{k+1}(d)=d_{k+1},$$

$$\xi_j(d) = \int_{\mathcal{X}} f'_j(\hat{u}, \mu_{j+1}, x) \xi_{j+1}(d) P(dx) + d_j(\mu_{j+1}), \quad j = k, k-1, \dots, 1.$$

Assumptions

- (a1) The optimal solution \hat{u} of the composite problem is unique.
- (a2) The functions $f_j(\cdot, \cdot, x)$, j = 1..k, and $f_{k+1}(\cdot, x)$ are Lipschitz continuous for every $x \in \mathcal{X}$ with square integrable constants.
- (a3) The functions $f_j(u, \cdot, x)$, j = 1..k, are continuously differentiable for every $x \in \mathcal{X}$, $u \in \mathcal{U}$; their derivatives are continuous with respect to the first two arguments.

It holds

$$\sqrt{N} \left(\vartheta^{(N)} - \vartheta \right) \xrightarrow[N \to \infty]{d} \xi_1(\hat{u}, W),$$

 $W(\cdot) = (W_1(\cdot), \ldots, W_k(\cdot), W_{k+1})$ is a zero-mean Brownian process on I; $W_j(\cdot)$ is a Brownian process of dimension m_{j-1} on I_j , $j = 1, \ldots, k$, and W_{k+1} is an m_k -dimensional normal vector.

The covariance function of $W(\cdot)$ has the form

$$\begin{aligned} \operatorname{cov} & \left[W_{i}(\eta_{i}), W_{j}(\eta_{j}) \right] = \\ & \int_{\mathcal{X}} \left[f_{i}(\hat{u}, \eta_{i}, x) - \bar{f}_{i}(\hat{u}, \eta_{i}) \right] \left[f_{j}(\hat{u}, \eta_{j}, x) - \bar{f}_{j}(\hat{u}, \eta_{j}) \right]^{\top} P(dx), \\ & \eta_{i} \in I_{i}, \eta_{j} \in I_{j}, \ i, j = 1, \dots, k \\ \operatorname{cov} & \left[W_{i}(\eta_{i}), W_{k+1} \right] = \\ & \int_{\mathcal{X}} \left[f_{i}(\hat{u}, \eta_{i}, x) - \bar{f}_{i}(\hat{u}, \eta_{i}) \right] \left[f_{k+1}(\hat{u}, x) - \bar{f}_{k+1}(\hat{u}) \right]^{\top} P(dx), \\ & \eta_{i} \in I_{i}, \ i = 1, \dots, k \\ \operatorname{cov} & \left[W_{k+1}, W_{k+1} \right] = \\ & \int_{\mathcal{X}} \left[f_{k+1}(\hat{u}, x) - \bar{f}_{k+1}(\hat{u}) \right] \left[f_{k+1}(\hat{u}, x) - \bar{f}_{k+1}(\hat{u}) \right]^{\top} P(dx). \end{aligned}$$

Assumption A

The sequence of measures $\{\mu_N\}$ are independent of $P_N,$ normalized, and satisfying

• μ_N converges weakly to point mass $\delta(0)$ when $N \to \infty$;

$$\int_{\mathbb{R}^m} \|z\| \, d\mu_N(z) \text{ is finite and } \lim_{r \to \infty} \lim_{N \to \infty} \int_{\|z\| > r} \|z\| \, d\mu_N(z) = 0.$$

The smooth estimators for the expectation of a function $g : \mathbb{R}^m \to \mathbb{R}$ based on the sequence $\{\mu_N\}$ is defined as follows:

$$\frac{1}{N}\sum_{i=1}^{N}\int_{\mathbb{R}^m}g(X_i+z)\,d\mu_N(z).$$

A function $g : \mathbb{R}^m \to \mathbb{R}$ admits a modulus of continuity $w : \mathbb{R}_+ \to \mathbb{R}$ if

•
$$\lim_{t\downarrow 0} w(t) = w(0) = 0;$$

• for all $x, z \in \mathbb{R}^m$, it holds $|g(x) - g(x')| \le w(||x - x'||)$;

Let an index set $J \subseteq \{1, 2, ..., k + 1\}$, and a sequence of measures $\{\mu_N\}$ satisfying Assumption A be given. Assume the following conditions:

- ► For $j \notin J$, the functions $f_j(u, \eta_j, \cdot)$ as well as $f_{k+1}(u, \cdot)$ for $k + 1 \notin J$ are uniformly bounded for all $(u, \eta) \in \mathcal{U} \times I$ by a *P*-integrable function.
- For $j \in J$, the functions $f_{j,i}(u, \eta_j, \cdot)$, $i = 1, ..., m_{j-1}$ for all $(u, \eta_j) \in \mathcal{U} \times I_j$; if $k + 1 \in J$, then $f_{k+1,i}(u, \cdot)$, $i = 1, ..., m_k$ for all $u \in \mathcal{U}$ admit a modulus of continuity.

Then
$$\varrho_{\mu}^{(N,j)}[u, X] \xrightarrow[N \to \infty]{a.s.} \varrho[u, X]$$
 for every $u \in \mathcal{U}$,
 $\vartheta_{\mu}^{(N,j)} \xrightarrow[N \to \infty]{a.s.} \vartheta$, and $d(S_{\mu}^{(N,j)}, S) \xrightarrow[N \to \infty]{a.s.} 0.$

$$\frac{1}{Nh_N^m}\sum_{i=1}^N\int_{\mathbb{R}^m}g(x)K\Big(\frac{x-X_i}{h_N}\Big)\,dx,$$

where $h_N > 0$ is a smoothing parameter such that $\lim_{N\to\infty} h_N = 0$. Assumptions:

(k1) The kernel K of order s > 1 is a density function with respect to the Lebesgue measure satisfying ∫_{ℝm} y^j_lK(y)dy = 0 for l = 1,..., m, j = 1,..., [s] with [s] being the largest integer smaller than s.
(k2) The s-th moment ∫_{ℝm} ||y||^sK(y)dy is finite.

SLLN for kernel-based estimators

Suppose all functions $f_{j,i} : \mathbb{R}^m \to \mathbb{R}, j \in J, i = 1, ..., m_{j-1}$, admit a modulus of continuity with respect to the last argument, which does not depend on u or η . Then $\varrho_K^{(N)}[u, X] \xrightarrow[N \to \infty]{a.s.} \varrho[u, X]$ for every $u \in \mathcal{U}$, $\vartheta_K^{(N)} \xrightarrow[N \to \infty]{a.s.} \vartheta$, and $d(S_K^{(N)}, S) \xrightarrow[N \to \infty]{a.s.} 0$.

Let an index set $J \subseteq \{1, 2, \ldots, k+1\}$.

- The sequence of measures $\{\mu_N\}$ satisfies Assumption A.
- For j = 1, ..., k, $f_j(u, \eta_j, \cdot)$ and $f_{k+1}(u, \cdot)$ are continuous and uniformly bounded by a *P*-integrable function $g_j : \mathbb{R}^m \to \mathbb{R}$ for all $u \in \mathcal{U}$ and for all $\eta_j \in I_j$.

Then
$$\varrho_{\mu}^{(N,j)}[u, X] \xrightarrow{p} \varrho[u, X]$$
 for every $u \in \mathcal{U}$,
 $\vartheta_{\mu}^{(N,j)} \xrightarrow{p} \vartheta$, and $d(S_{\mu}^{(N,j)}, S) \xrightarrow{p} 0$.
Additionally, if the true problem has a unique solution, then
 $D(S_{\mu}^{(N,j)}, S) \xrightarrow{p} 0$ as well.

Wavelet-based density estimator

$$\widetilde{d}_{N}(x) = \sum_{\ell=-\infty}^{\infty} 2^{-j/2} \frac{1}{N} \sum_{i=1}^{N} \phi(2^{j}X_{i} - \ell) \} \phi_{j\ell}(x)$$

$$\vartheta_{w}^{(N)} = \min_{u \in \mathcal{U}} \int_{\mathcal{X}} f(u, x) \widetilde{d}_{N,j}(x) \, dx = \min_{u \in \mathcal{U}} \frac{2^{j}}{N} \sum_{i=1}^{N} \int_{\mathcal{X}} f(u, x) K(2^{j}X_{i}, 2^{j}x) \, dx,$$

with the generalized kernel $K(y, x) = \sum_{\ell \in \mathbb{Z}} \phi(y - \ell) \phi(x - \ell)$.

The function $\phi_{j\ell}(x) = 2^{j/2}\phi(2^j x - \ell)$, where $\phi(x)$ is right-continuous, non-negative, with finite variation, and with compact support in $[-a, a], 1/2 \le a < \infty$, and satisfies the conditions (w1) $\sum_{\ell=-\infty}^{\infty} \phi(x - \ell) = 1$ for all $x \in \mathbb{R}$ (w2) $x - \sum_{\ell=-\infty}^{\infty} \ell \phi(x - \ell) = 0$ for all $x \in \mathbb{R}$.

Order of the optimal resolution level $j^* \propto \log_2 N$, with $j^* = \log_2 N/5$ giving very good performance over a wide variety of density classes.

The set of all Lipschitz-continuous and bounded functions on $\mathsf{conv}(\mathcal{X})$

$$\mathfrak{F} = \{g: |g(x) - g(x')| \le ||x - x'||, \sup_{x \in \operatorname{conv}(\mathfrak{X})} |g(x)| \le 1\}.$$

The metric $\beta(Q,Q')$ metrizes the weak convergence on $\mathcal{P}(\mathcal{X})$

$$\beta(Q, Q') = \sup_{g \in \mathfrak{F}} \Big| \int_{\mathfrak{X}} g(x) dQ(x) - \int_{\mathfrak{X}} g(x) dQ'(x) \Big|.$$

For a function $w : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\lim_{t \downarrow 0} w(t) = w(0) = 0$, we define

$$\tilde{\tilde{\mathfrak{F}}} = \left\{ g : \operatorname{conv}(\mathfrak{X}) \to \mathbb{R} : \left| g(x) - g(x') \right| \le w \left(\|x - x'\| \right) \right\} \\
\tilde{\beta}(Q, Q') = \sup_{g \in \tilde{\mathfrak{F}}} \left| \int_{\mathfrak{X}} g(x)Q(dx) - \int_{\mathfrak{X}} g(x)Q'(dx) \right|$$

- $\tilde{\mathfrak{F}}$ consists of real-valued functions that admit joint modulus of continuity.
- If w(t) = Lt, then 𝔅 ⊂ 𝔅, hence, every sequence of measures converging with respect to β̃ also converges with respect to β.

Darinka Dentcheva

Given a sequence of measures $\{Q_N^j\}, j = 1, \dots, k + 1, N \in \mathbb{N}$.

Approximate (measure-perturbed) problem

$$\varrho^{(Q_N^1, Q_N^{k+1})}[u, X] = \bar{f}_1^{Q_N^1} \Big(u, \bar{f}_2^{Q_N^2} \big(u, \cdots \bar{f}_k^{Q_N^k} \big(u, \bar{f}_{k+1}^{Q_{k+1}^k}(u) \big) \cdots \big) \Big)$$

$$\vartheta^{(Q_N^1, Q_N^{k+1})} = \min_{u \in U} \varrho^{(Q_N^1, Q_N^{k+1})}[u, X]$$

$$S^{(Q_N^1, Q_N^{k+1})} = \{ u \in \mathcal{U} : \varrho^{(Q_N^1, Q_N^{k+1})}[u, X] = \vartheta^{(Q_N^1, Q_N^{k+1})} \}$$

Stability

Assume that $Q_N^j \xrightarrow[N \to \infty]{w} P, j = 1, ..., k + 1$ and $S^{(Q_N^1..Q_N^{k+1})} \neq \emptyset$ for *N* large enough. Suppose one of the following conditions:

- (a) the functions $f_j(u, \eta_j, \cdot)$ and $f_{k+1}(u, \cdot)$ belong to \mathfrak{F} for all $(u, \eta) \in U \times I$, $j = 1, \ldots, k$;
- (b) the functions f_j(u, η_j, ·) and f_{k+1}(u, ·) belong to δ̃ for all (u, η) ∈ U × I, j = 1,..., k and the sequences of measures Qⁱ_N satisfy uniform integrability condition, e.g.,

$$\lim_{N\to\infty}\int_{\mathcal{X}}\|x\| \ Q_N^j(dx)=\int_{\mathcal{X}}\|x\| \ P(dx) < \infty$$

Then
$$\varrho^{(Q_N^1..Q_N^{k+1})}[u, X] \xrightarrow[N \to \infty]{} \varrho[u, X]$$
 for every $u \in \mathcal{U}$,
 $\vartheta^{(Q_N^1..Q_N^{k+1})} \xrightarrow[N \to \infty]{} \vartheta$, and $d(S^{(Q_N^1..Q_N^{k+1})}, S) \xrightarrow[N \to \infty]{} 0$.

Additionally, if S is a singleton, then the Pompeiu–Hausdorff distance $D(S^{(Q_N^1..Q_N^{k+1})}, S)$ converges to zero.

Basic Single-Layer Problem and Bias

 $\theta = \min_{u \in \mathcal{U}} \mathbb{E}[F(u, X)].$

An i.i.d. sample X_1, X_2, \ldots, X_N of the probability measure *P* is given.

Approximations

Sample Average Approximation
$$\theta_{SAA}^{(N)} = \min_{u \in U} \frac{1}{N} \sum_{i=1}^{N} F(u, X_i)$$

• Kernel-based Approximation
$$\theta_{K}^{(N)} = \min_{u \in U} \frac{1}{N} \sum_{i=1}^{N} \int_{\mathbb{R}^{m}} F(u, z) K\left(\frac{z - X_{i}}{h_{N}}\right)$$

Downward bias

$$\theta = \min_{u \in U} \mathbb{E}[F(u, X)] = \min_{u \in U} \mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} F(u, X_i)\right]$$
$$\geq \mathbb{E}\left[\min_{u \in U} \frac{1}{N} \sum_{i=1}^{N} F(u, X_i)\right] = \mathbb{E}[\theta_{SAA}].$$

.

Assume that

• the function $F(\hat{u}, \cdot)$ admits a modulus of continuity of Hölder type.

- ► $F(u, \cdot)$ is convex for any fixed $u \in U$,
- ▶ the kernel *K* satisfies (k1)-(k2).

Then constants L > 0, $\alpha > 0$ and $h_N^* > 0$ exist, such that for $h_N \in (0, h_N^*)$ the following relations hold:

$$\begin{split} |\mathbb{E}[\theta_{K}^{(N)}] - \theta| &\leq |\mathbb{E}[\theta_{SAA}^{(N)}] - \theta| \\ \mathbb{E}[\theta_{K}^{(N)} - \mathbb{E}[\theta_{K}^{(N)}]| &\leq \mathbb{E}[\theta_{SAA}^{(N)} - \mathbb{E}[\theta_{SAA}^{(N)}]| + Lh_{N}^{\alpha} \\ \left(\mathbb{E}[(\theta_{K}^{(N)} - \mathbb{E}[\theta_{K}^{(N)}])^{2}]\right)^{\frac{1}{2}} &\leq \left(\mathbb{E}(\theta_{SAA}^{(N)} - \mathbb{E}[\theta_{SAA}^{(N)}])^{2}\right)^{\frac{1}{2}} + Lh_{N}^{\alpha} \\ \left(\mathbb{E}\Big[\left(\theta_{K}^{(N)} - \theta\right)^{2}\Big]\right)^{\frac{1}{2}} &\leq \left(\mathbb{E}\Big[\left(\theta_{SAA}^{(N)} - \theta\right)^{2}\Big]\right)^{\frac{1}{2}} + Lh_{N}^{\alpha}. \end{split}$$

Applications: LASSO problem

Consider an outcome *Y* and explanatory variables comprised in an *m*-dimensional vector *X*. The objective of LASSO is to solve

$$\min_{\beta_0,\beta\in\mathbb{R}^m}\sum_{i=1}^N \left(y_i-\beta_0-\beta^\top X^i\right)^2 \text{ subject to } \sum_{j=1}^m |\beta_j| \leq t.$$

The smoothed (with respect to the data) objective function

$$\sum_{i=1}^{N} \int \left(\tilde{\beta}^{\top} \tilde{x} \right)^{2} K \left(\frac{\tilde{X}^{i} - \tilde{x}}{h_{N}} \right) \frac{1}{h_{N}^{m+1}} \, d\tilde{x},$$

where $\tilde{\beta} = (\beta, -1, \beta_0)$ and $\tilde{x} = (x, y, 1)$ with $\tilde{X}^i = (X^i, Y^i, 1), i = 1..N$. The Bias Reduction Theorem apply.

Corollary Smoothing with the normal kernel with covariance *A* is equivalent to

$$\min_{\beta \in \mathbb{R}^m} \sum_{i=1}^N \left(y_i - \beta^\top X^i \right)^2 + h_N^2 \| (-1, \beta) \|_A^2 \text{ subject to } \sum_{j=1}^m |\beta_j| \le t.$$

Darinka Dentcheva

Sample-based Composite Optimization

Given a weight $\kappa \in (0, 1)$ for the Average Value-at-Risk and a probability level $\beta \in (0, 1)$, we define

$$F(u,\eta,x) = -\kappa \langle u,x \rangle + (1-\kappa) \Big(-\eta + \frac{1}{\beta} \max\{0,\eta - \langle u,x \rangle\} \Big),$$
$$U = \{u \in \mathbb{R}^m : \sum_{i=1}^m u_i = K, \ l_i \le u_i \le b_i\}$$

The AVaR $_{\beta}$ -portfolio optimization problem

$$\min_{u\in U,\eta\in\mathbb{R}}\mathbb{E}\big[F(u,\eta,X)\big].$$

The modulus of continuity is $w(t) = c(\kappa + (1 - \kappa)/\beta)t$.

The Consistency Theorem and the Bias Reduction Theorem apply.

Bias in composite optimization

$$\vartheta = \min_{u \in U} f_1(u, \mathbb{E}[f_2(u, X)])$$
$$\vartheta_E^{(N)} = \min_{u \in U} f_1\left(u, \frac{1}{N}\sum_{i=1}^N f_2(u, X_i)\right)$$

where $U \subset \mathbb{R}^n$ is a nonempty compact set.

Downward bias

If the function $f_1(u, \cdot)$ is concave for all $u \in U$, then $\mathbb{E}[\vartheta_E^{(N)}] \leq \vartheta$.

Higher-order measures of risk

$$\varrho[Y] = \min_{z \in \mathbb{R}} \left\{ -z + \frac{1}{\alpha} [\mathbb{E}(\max(0, z - Y)^q)]^{1/q} \right\}$$

$$\varrho[Y] = \min_{z \in \mathbb{R}} \left\{ -z + \frac{1}{\alpha} [\mathbb{E}(\max(0, z - Y)^q)]^{1/q} \right\}.$$

Given a weight $\kappa \in (0, 1)$ for and a parameter $\beta \in (0, 1)$, we define

$$f_1(u, \eta, x) = (1 - \kappa)\eta_1 + \kappa \left(-u_0 + \frac{1}{\alpha}\eta_2^{1/q}\right),$$

$$f_2(u, x) = \begin{pmatrix} -\langle x, u \rangle \\ [\max(0, u_0 - \langle x, u \rangle)]^q \end{pmatrix},$$

$$U = \left\{ u \in \mathbb{R}^m : \sum_{i=1}^m u_i = K, \ l_i \le u_i \le b_i \right\}$$

Optimization problem using the higher order risk measure

$$\min_{u \in U} \mathbb{E}[f_1(u, \mathbb{E}[f_2(u, z, X)], X)].$$

The Consistency Theorem and the Bias Reduction Theorem apply.

Darinka Dentcheva

Sample-based Composite Optimization

Smoothing reduces negative bias in composite optimization

Given an index set $J \subset 1, \dots, k + 1$, let $l = \max\{j : j \in J\}$. Assume that

- For all *j* ∈ *J*, the functions *f_j* are convex with respect to the last argument and the functions *f_j*(*u*, ·, *x*), *j* = 1, . . . *ℓ* − 1 are monotonically non-decreasing;
- ► for each $j \in J$, the function f_j has a Hölder modulus of continuity $w_j^x(t) = \ell_j^x t^{\beta_j}$ with respect to the last argument and the function $f_{j-1}(u, \cdot, x), j > 1$, has a modulus of continuity $w_j^{\eta}(t) = \ell_j t^{\alpha_j}$.
- The order of the kernel is at least $\max_{j \in J} \beta_j$.

Then constants L > 0, $\alpha > 0$ and $h_N^* > 0$ exist, such that for all $h_N \in (0, h_N^*)$

$$\begin{split} \left| \mathbb{E}[\vartheta_{K}^{(N,J)}] - \vartheta \right| &\leq \left| \mathbb{E}[\vartheta_{E}^{(N)}] - \vartheta \right|. \\ \mathbb{E}[\vartheta_{K}^{(N,J)} - \mathbb{E}[\vartheta_{K}^{(N,J)}] \right| &\leq \mathbb{E}[\vartheta_{E}^{(N)} - \mathbb{E}[\vartheta_{E}^{(N)}] + Lh_{N}^{\alpha}, \\ \left(\mathbb{E}[(\vartheta_{K}^{(N,J)} - \mathbb{E}[\vartheta_{K}^{(N,J)}])^{2}] \right)^{\frac{1}{2}} &\leq \left(\mathbb{E}(\vartheta_{E}^{(N)} - \mathbb{E}[\vartheta_{E}^{(N)})^{2} \right)^{\frac{1}{2}} + Lh_{N}^{\alpha} \\ \left(\mathbb{E}\Big[\left(\vartheta_{K}^{(N,J)} - \vartheta \right)^{2} \Big] \right)^{\frac{1}{2}} &\leq \left(\mathbb{E}\Big[\left(\vartheta_{E}^{(N)} - \vartheta \right)^{2} \Big] \right)^{\frac{1}{2}} + Lh_{N}^{\alpha}. \end{split}$$

We estimate the risk measure

$$\varrho[X] = \min_{u \in \mathbb{R}} \left\{ u + \frac{1}{\alpha} [\mathbb{E}(\max(0, X - u)^q)]^{1/q} \right\},$$

with parameters q = 1 or q = 2 and $\alpha = 0.05$ or $\alpha = 0.2$

- For the kernel estimator, we have experimented with the Gaussian kernel, the uniform kernel $K(x) = \frac{1}{2h_N}$ with support on $|x| \le h_N$, and the Epanechnikov kernel $K(x) = \frac{3}{4}(1-x^2)$ on the support: $|x| \le h_N$.
- First sequence of experiments, we have X_i , $i = 1, \dots, N$ from a normal distribution $\mathcal{N}(10, 3)$ and have selected values of $\alpha = 0.05$ and $\alpha = 0.2$. The optimal $u^* = 14.5048$ is determined by numerical integration resulting in the "true" $\vartheta_0 = 15.5163$ as the estimated risk. The bandwidth recommended for a kernel density estimator for the normal distribution is $1.06\hat{\sigma}N^{-\frac{1}{5}}$ with $\hat{\sigma}$ being the sample variance.
- ► In a second series of experiments, we used the *t* distribution with various degrees of freedom *v* such as 6, 8 and 60, with the data shifted to have the same mean of 10 as the normal simulated data before.

Numerical Results for AVaR_{0.05}, Uniform kernel

h_N	м	$1.06\hat{\sigma}N^{-\frac{1}{5}}$	0.5	0.35	0.2	0.05	SAA
100	5000	0.0489	-0.0105	-0.0395	-0.0601	-0.071	-0.0719
200	5000	0.0495	0.018	-0.0091	-0.0277	-0.0374	-0.0382
500	5000	0.0412	0.0353	0.0095	-0.0076	-0.0159	-0.0166

Bias

Variance

h_N	М	$1.06\hat{\sigma}N^{-\frac{1}{5}}$	0.5	0.35	0.2	0.05	SAA
100	5000	0.1713	0.1723	0.177	0.1804	0.1824	0.1826
200	5000	0.087	0.0866	0.089	0.0908	0.0917	0.0918
500	5000	0.0364	0.0358	0.0368	0.0375	0.0379	0.0379

h_N	м	$1.06\hat{\sigma}N^{-\frac{1}{5}}$	0.5	0.35	0.2	0.05	SAA
100	500	-0.0135	-0.0496	-0.0679	-0.0807	-0.0873	-0.0878
200	500	0.0118	-0.0074	-0.024	-0.0354	-0.0414	-0.0419
500	500	0.0181	0.0146	-0.0009	-0.0112	-0.016	-0.0163

Bias

Variance

h_N	м	$1.06\hat{\sigma}N^{-\frac{1}{5}}$	0.5	0.35	0.2	0.05	SAA
100	500	0.1832	0.1763	0.1792	0.1816	0.183	0.1832
200	500	0.0889	0.0887	0.0902	0.0912	0.0917	0.0918
500	500	0.0398	0.0394	0.04	0.0404	0.0406	0.0406

Numerical Results for AVaR_{0.2}, uniform kernel

h_N	м	$1.06\hat{\sigma}N^{-\frac{1}{5}}$	0.5	0.35	0.2	0.05	SAA
100	500	0.0324	-0.0057	-0.0237	-0.0359	-0.042	-0.0425
200	500	0.0448	0.0243	0.0071	-0.0043	-0.0098	-0.0103
500	500	0.0328	0.0289	0.0118	0.0007	-0.0045	-0.0163

Bias

Variance

h_N	м	$1.06\hat{\sigma}N^{-\frac{1}{5}}$	0.5	0.35	0.2	0.05	SAA
100	500	0.0701	0.0684	0.0693	0.0699	0.0702	0.0702
200	500	0.0342	0.0332	0.0336	0.0339	0.034	0.034
500	500	0.0153	0.0149	0.0151	0.0152	0.0153	0.0153

h N	м	$1.06\hat{\sigma}N^{-\frac{1}{5}}$	0.5	0.35	0.2	0.05	SAA
100	500	0.0035	-0.0198	-0.0303	-0.0384	-0.0422	-0.0425
200	500	0.0233	0.0111	0.0111	-0.0066	-0.01	-0.0103
500	500	0.0179	0.0155	0.0052	-0.0015	-0.0046	-0.0163

Bias

Variance

h N	м	$1.06\hat{\sigma}N^{-\frac{1}{5}}$	0.5	0.35	0.2	0.05	SAA
100	500	0.0701	0.0691	0.0693	0.07	0.0702	0.0702
200	500	0.0341	0.0336	0.0336	0.0339	0.034	0.034
500	500	0.0153	0.0151	0.0152	0.0153	0.0153	0.0153

Uniform Kernel

N	Kernel Bias	Empirical Bias	Kernel Variance	Empirical Variance
100	-0.6095	-1.1896	0.5893	0.5754
200	-0.3930	-0.7891	0.5132	0.5350
500	-0.1655	-0.3236	0.3482	0.4099

Epanechnikov Kernel

N	Kernel Bias	Empirical Bias	Kernel Variance	Empirical Variance
100	-0.7254	-1.1896	0.5813	0.5754
200	-0.4852	-0.7891	0.5168	0.5350
500	-0.2164	-0.3236	0.3641	0.4099

Gaussian Kernel

N	Kernel Bias	Empirical Bias	Kernel Variance	Empirical Variance
100	-0.6095	-1.1896	0.5893	0.5754
200	-0.3930	-0.7891	0.5132	0.5350
500	-0.1655	-0.3236	0.3482	0.4099

Wavelet-based estimator

N	Wavelet	Empirical	Wavelet	Empirical
	Bias	Bias	Variance	Variance
100	-0.6430	-1.1668	0.6054	0.6375
200	-0.3728	-0.7677	0.4879	0.5382
500	-0.1016	-0.2996	0.2842	0.3525

N	dg	Kernel	Empirical	Kernel	Empirical
		Bias	Bias	Variance	Variance
100	6	-1.9800	-2.1343	1.3440	1.3150
200	6	-1.4528	-1.5649	1.5973	1.5886
500	6	-0.7694	-0.7952	1.6350	1.6624
100	8	-1.4044	-1.5452	1.2057	1.1805
200	8	-0.9433	-1.0468	1.2299	1.2207
500	8	-0.4875	-0.5126	1.0281	1.0460
100	60	-0.6193	-0.7367	0.2529	0.2457
200	60	-0.3776	-0.4642	0.2168	0.2158
500	60	-0.1513	-0.1789	0.1687	0.1768

Uniform kernel

Ν	dg	Kernel	Empirical	Kernel	Empirical
		Bias	Bias	Variance	Variance
100	6	-2.0119	-2.1343	1.3370	1.3150
200	6	-1.4790	-1.5649	1.5954	1.5886
500	6	-0.7782	-0.7952	1.6435	1.6624
100	8	-1.4336	-1.5452	1.1996	1.1805
200	8	-0.9675	-1.0468	1.2299	1.2207
500	8	-0.4960	-0.5126	1.0336	1.0460
100	60	-0.6436	-0.7367	0.2510	0.2457
200	60	-0.3979	-0.4642	0.2166	0.2158
500	60	-0.1606	-0.1789	0.1710	0.1768

Epanechnikov kernel

N	df	Wavelet	Empirical	Wavelet	Empirical
		Bias	Bias	Variance	Variance
100	6	-1.6239	-2.1477	1.3681	1.4114
200	6	-1.2090	-1.5892	1.4265	1.4979
500	6	-0.5870	-0.7453	1.9387	2.1290
100	8	-1.0266	-1.5532	0.9092	0.9622
200	8	-0.6814	-1.0694	0.9434	1.0175
500	8	-0.3029	-0.480	1.0214	1.1519
100	60	-0.2176	-0.7692	0.2182	0.2506
200	60	-0.0788	-0.5058	0.1745	0.2171
500	60	0.0490	-0.2092	0.0935	0.1366

Wavelet-based estimator