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Composite risk functionals

Motivation

olX] = B[ (E[A(EL - Bl 001 X -+, X)]. X) |

X is an integrable random vector with values in X' € R™ and probability
distribution P. f : R™ x R™ — R™=1, j =1,..., k, with my = 1and
Sit1 : R — R,

Example

The mean-semi-deviation of order p > 1 for a random variable X
representing a loss is

o=

o[X] = E[X] + K[E[( max{0, X — E[X]})p]]

where « € [0, 1]. We have k = 2, m = 1, and

’

Filn %) = x + Kt
fo(m2. x) = [ max{0, x — 2} )"
fr(x) = x.

s
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Composite functionals in optimization

Composite functionals

o[X] = E[A(E[LEL . . iElfit1(X)], X)] ..., X)]. X)]

Risk measures representable as optimal values of composite functionals

61X] = min fi(u. E[fy(u. X))
$[X] = argmin, e,y (. Elfs (u. X))

where U € R is a nonempty closed set.

Optimized composite functionals

9[X] = mino(u, X)

olu, X] = E[fy (u. E[fa(u. E[. .. fi(u, Efie1(u. X)1. X)] . ... X)]. X)]

where U C R9 is a nonempty closed set.
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Problems and Goals

Goal
» asymptotic behavior of sample based optimization problems with
composite functionals;

> stability with respect to measure perturbations;

» bias of the estimators.
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Introduction

For a measure Q € £(X), we define

Fou. ) = [xﬁ(u, B0 Q). J= 1k
)
7 = /xfkﬂw, %) Q(dx)

Assumption: A compact set U exists such that S C int U C U.
Compact convex sets Iy C R™ ... | [, C R™ are such that

F (U ) Cint(h), - fil (W) C int(h;
I=hLxhx--l, d=my+m~+---+ my.
Approach: Embed the functions into the space
H=C(UX M) XECp(UX L)X+ XCpy (UX I) X Cp (W)
where €, is the space of R™~'-valued continuous function on U x /.
We analyze the vector function (@27 ¢ g

—(n1 ok+1 -0 -0? -0k - ok+1
FO-C ) = E (wom) S (wma), - S () 3 ()T
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Empirical estimators

Given {Xi};>1 i.i.d random variables with measure P,
let Py be the empirical measure.

The empirical estimators

AN AN AN
ol X1 = - S 3 gl Y g
N

fi(u. Z %fk+1 (u, X)), Xikﬂ)] SLP Xh)]’ Xio)]

k=1

2" 1X] = min 0¢”[u, X]

SEN)[X] ={ueU: ﬁé’v) = Q(EN)}

We use the entire sample for estimating each expectation
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Strong Law of Large Numbers

For two sets, A, B C R", the one-sided distance of A to Bis

d(A, B) = supd(x, B) = sup |nf Ix — yll-

XEA

The Pompeiu-Hausdorff distance between the sets is defined as

D(A, B) = max {d(A, B). d(B, A)}

> Assume fi(u,7;,+), j = 1,..., k and fi11(u,-) are uniformly bounded
for all v € U and for all n; € /; by a P-integrable function g : R — R.

» Suppose SEN) [X] # @ for N large enough.

Then of )[u X] —> olu, X] for every u € U,
M 22, and d(S(N) S) =5 0.
N—o00 N—o00

If the true problem has a unique solution, then D(SEN)s S) Na.s. 0
—>00
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CLT for optimized composite risk functionals

Given a point u € U, we define
Tl = [ finw.0 @0, s =7

ﬁp(u, n) = /x]j(u, n,x) P(dx), j=1,....k,
W=, j=1.. .k
J = ~€1(0,1)(U x h) x ‘C’rsg,l)(u X ly) x ‘C’,(nil)](U X 1) X €, (U),

where 'C’,Sq?’j])(U x ;) is the space of R™~'-valued continuous functions on
U x I, which are differentiable with respect to the second argument with
continuous derivatives on U x /..

The Jacobian of f(u, 7;, x) w.r.t. the second argument is denoted jj-/(u, njs X).

For every direction d € Jz, we define recursively:
Er1(d) = dir,

§(@) = [/ t1 06501 ) + G 1). = k=11
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CLT for optimal values

Assumptions
(al) The optimal solution & of the composite problem is unique.

(a2) The functions f(-,-, x), j = 1..k, and fi41(-, x) are Lipschitz
continuous for every x € X with square integrable constants.

(a3) The functions fi(u,-, x), j = 1..k, are continuously differentiable for
every x € X, u € U; their derivatives are continuous with respect to
the first two arguments.

It holds p
INE® —9) —s £, W),
—00

wW() = (W1 )y WR(9), Wk+1) is a zero-mean Brownian process on
W;(-) is a Brownian process of dimension mi_; on I, j=1,...,k, and
Wi+1 is an my-dimensional normal vector.
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Covariance structure

The covariance function of W(-) has the form
cov[ Wi(n)). Wi(n)] =
| G0 =m0 = ] P
neEl, el ij=1,...,k
cov[ Wi()), Wiet1] =
[ G0 = ] s @0 = s @] P

77,‘6/,’, i=1,...,k
COV[Wk+1»Wk+1] =

/x s (it ) = Feon (@] [fesn (i) = o ()] P(c).
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Smoothed estimators

Assumption A
The sequence of measures {iy} are independent of Py, normalized, and
satisfying
> 1y converges weakly to point mass §(0) when N — oo;
> [ |zl dun(2) is finite and lim lim [ ||z|| dun(z) = 0.
Rm

r—>00 N—o00

llzll>r

The smooth estimators for the expectation of a function g : R™ — R based
on the sequence {iy} is defined as follows:

1 N
— E g(X, + Z) d,bLN(Z)
N

i=1gm

A function g : R™ — R admits a modulus of continuity w : R4 — R if
P limgyo w(t) = w(0) = 0;
> for all x,z € R™, it holds |g(x) — g(x")| < w(||x — X||);
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SLLN for smoothed estimators

Let an index set / € {1,2,..., k + 1}, and a sequence of measures {jy}
satisfying Assumption A be given. Assume the following conditions:
» For j & J, the functions f(u, n;,-) as well as fiy1(u,-) for k 4+ 1 ¢ J are
uniformly bounded for all (u, n) € U x I by a P-integrable function.
» For j € J, the functions f ;(u,n;,+), i = 1,..., mi_; for all
(u,n) € Ux I;if k4 1€ J then fiqq,i(u,-), i=1,..., mforall
u € U admit a modulus of continuity.

Then QELN’J)[U, X] Na—s> olu, X] for every u € U,
—00

193\/’]) LN ¥, and d(Sl(LN’j), S) 250
N—o0 N—o0
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Kernel estimators

N
NLW; g(x)K( ™ )dx

where hy > 0 is a smoothing parameter such that limy_, Ay = 0.
Assumptions:

(k1) The kernel K of order s > 1is a density function with respect to the
Lebesgue measure satisfying [ y/K(y)dy = 0for[=1,....m
Rm
j=1,...,|s] with |s| being the largest integer smaller than s.
(k2) The s-th moment [ |ly[*K(y)dy is finite.
Rm

SLLN for kernel-based estimators

Suppose all functions fi; : R™ - R, j € J,i=1,...,m_;, admit a
modulus of continuity with respect to the last argument, which does not
depend on u or 1. Then QK )[u X] —> olu, X] for every u e U,

™M 225 9 and d(s™V, ) 2 o.
N—00 N—00
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Consistency of the smoothed estimators

Let an indexset J C {1,2,..., k+ 1}.

» The sequence of measures {{ty} satisfies Assumption A.

> Forj=1,...,k fi(u,n,-) and fi11(u,-) are continuous and uniformly
bounded by a P-integrable function g : R” — R for all u € U and for
all N € IJ

Then Q&N’j)[u, X] AN olu, X] for every u e U,
N—00

ﬁ,&N’J) LN ¥, and d(S,(LN’J), S) LAY
N—o00 N—o0
Additionally, if the true problem has a unique solution, then
D(S,(LN’D, S) —P 5 0aswell.
N—00
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Wavelet-based Estimators

Wavelet-based density estimator

dy(x) = Z 22 Z¢(zf)<—£)}¢,e(x>

{=—00

N = min / f(u, x)dyj(x) dx = min —Z/ f(u, x)K(2X;, 2x) dx,

with the generalized kernel K(y,x) = Y ;7 ¢ (y — O (x — £).

The function ¢j¢(x) = 2//2¢(2/x — £), where ¢ (x) is right-continuous,
non-negative, with finite variation, and with compact support in
[—a, a],1/2 < a < 00, and satisfies the conditions

wl) Y2 p(x—€) =1forallxeR
w2) x =Y 2 _Ap(x—1L) =0forall x € R.

Order of the optimal resolution level j* o log, N, with j* = log, N/5
giving very good performance over a wide variety of density classes.
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Probability metrics

The set of all Lipschitz-continuous and bounded functions on conv(X)

=181 100 —g)| = lIx=X1.  sup_|gk0)| =1}

x€conv(X)

The metric 8(Q, Q') metrizes the weak convergence on £ (X))
pa.a)=su | [ g0da - [ gwdao)
For a function w : Ry — Ry such that limjo w(t) = w(0) = 0, we define
§ =l comv(¥) > R [g) — 20| = willx— X))
pa.@)=sw | [ gwaw@o- [ ga)

8ET

> 3§ consists of real-valued functions that admit joint modulus of
continuity.

> If w(t) = Lt,then § C @, hence, every sequence of measures
converging with respect to B also converges with respect to .
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Measure Perturbations

Given a sequence of measures {Q’N},j =1,...k+1,NeN.
Approximate (measure-perturbed) problem

1 k+1 _Q1 _Qz _Qk _Qk+1
Q(QN Qy )[u,X] = f, N(u, . N(u’...fk N(u’fk-m (u))))

9(@-GD = min o@Dy, X]
uelU

s@-afth — {ueU: 0@y, X] = ﬁ(Q}V..Q,kﬁ‘)}
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Stability

Assume that Qf\, %) P,j=1,...k+ 1and S(Q)V"Q'I:/+1) # @ for N large
—>00
enough. Suppose one of the following conditions:
(a) the functions f(u, nj,-) and fi11(u, -) belong to § for all (u,n) € U x I,

j=1,...,k
(b) the functions fi(u, n;,-) and fiy1(u, ) belong to 5 for all (u, n) e Uxl,
j=1,..., kand the sequences of measures Q’N satisfy uniform

integrability condition, e.g.,

Jim [l Qe = [ 1l i) <o

Then Q(QA/"QEIJH)[U, X] —— o[u, X] for every u € U,
N—o00

Q- 5 9 and d(S@-A, 5) — 0.
N—o00 N—>oo

Additionally, if S is a singleton, then the Pompeiu—Hausdorff distance
D(S(Qlwﬂff]), S) converges to zero.
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Basic Single-Layer Problem and Bias

0 =minE|F(u, X)|.
min E[F(u, X)]
An i.i.d. sample X, X3, ..., Xy of the probability measure P is given.
Approximations
N

1
» Sample Average Approximation QSAA = mllr} > Z F(u, X;)

i=1

— X
» Kernel-based Approximation 9( N = m|n Z/ F(u, z)K( p )

i= ]R"’ N

Downward bias

N
0 = minE[F(u X)] = Teilr}E[% Y Fu, x,)]

i=1

[mln — Z F(u, X)] — E[fsaa].

ueU N
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Smoothing reduces the bias

Assume that
» the function F(1,-) admits a modulus of continuity of Hélder type.
» F(u,-) is convex for any fixed u € U,
» the kernel K satisfies (k1)-(k2).

Then constants L > 0, « > 0 and hy, > 0 exist, such that for hy € (0, h})
the following relations hold:

IE[BM] - 6] < R[0S — 6]
Elo® — B[O < 16D — BIOSA| + LK

(EL6" - E[Gé”)])z])% < (BON - E[eéﬁhff + LH,

(e[ - 6])" < (E[ (%% - 6)7])" + Lht.

@

Darinka Dentcheva Sample-based Composite Optimization



Applications: LASSO problem

Consider an outcome Y and explanatory variables comprised in an
m-dimensional vector X. The objective of LASSO is to solve

N

0 T o2 o
min i— Bo— B X')" subject to | <t
i 2 (vi—Bo—B'X)" subj ; 16l

The smoothed (with respect to the data) objective function
N o~
~ X' —xy\ 1
T~\2 ~
;/ (85" ( h )hg;+1 ax

where,B~ = (B,—1,B0) and x = (x, y, 1) with X = X, Y, 1),i=1.N.
The Bias Reduction Theorem apply.

Corollary Smoothing with the normal kernel with covariance A is
equivalent to

N

2 i\ 2 g
min, (yi—BTX)" + R l(=1.B)II} subjectto > || < t.
i=1 Jj=1
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Application: optimizing the Average Value-at-Risk

Given a weight k € (0, 1) for the Average Value-at-Risk and a probability
level B € (0, 1), we define

F(u,n,x) = —ic{u, x)+(1—K)<—n+Emax{0 n—(u,x)}),
U:{UGRmI ZU;ZK, l;fu,-fb,-}

i=1

The AVaRg-portfolio optimization problem

I’LT)’Inn E[F(u n, X)]

The modulus of continuity is w(t) = c(k + (1 —«)/B)t.

The Consistency Theorem and the Bias Reduction Theorem apply.
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Bias in composite optimization

= min fi (u. E[fz(u, X)])

N
. 1
p®M = rJ1€|Lrj1f] (u, m ;fz(u, x,-))

where U C R" is a nonempty compact set.
Downward bias

If the function fi(y, ) is concave for all u € U, then E[ﬁém] < 9. J

Higher-order measures of risk

o[Y] = min{—z+ l[IE(max(O,z— Y)q)]]/q} .
z€ER o
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Higher-order measures of risk

o[Y] = min {—z + l[E(max(O, z— Y)q)]]/q} .
z€R o

Given a weight k € (0, 1) for and a parameter 8 € (0, 1), we define
1
flunox) = = 0m 4 i = w + —n;/).

B —{x, u)
700 = (oo e )

U={ueR": Zui=K, li < u; < b;}

i=1

Optimization problem using the higher order risk measure

Teil':/] IE[ 1(u, Elf2(u, z, X)], X)]

The Consistency Theorem and the Bias Reduction Theorem apply.
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Smoothing reduces negative bias in composite optimization

Given anindexset J C 1,...k+ 1, let [ = max{j : j € J}. Assume that

> forall j € J, the functions f; are convex with respect to the last
argument and the functions fj(u,,x), j =1,...£ — 1are
monotonically non-decreasing;

> for each j € J, the function f; has a Holder modulus of continuity
w(t) = E}‘tﬁf with respect to the last argument and the function

fioi(u,-, x), j > 1, has a modulus of continuity Wj"(t) = {;t%.

» The order of the kernel is at least max;e; ;.

Then constants L > 0, @ > 0 and hy, > 0 exist, such that for all hy € (0, hY)

[EPS) - 0| < |[ER - o).
B9 — B[] < B9 — B[] + LhY,

(B0 - EBM171)° < (B0 —EBX?)" + Lk

(B[22 = 97])" = (E[(0£° - 9)%])" + e,
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Numerical Results

We estimate the risk measure
1
o[X] = min {u + —[E(max(0, X — u)q)]]/q},
ueR o

with parameters g = 1Torg=2and o = 0.050ro = 0.2

» For the kernel estimator, we have experimented with the Gaussian
kernel, the uniform kernel K(x) = ﬁ with support on |x| < hy, and
the Epanechnikov kernel K(x) = %(1 — x?) on the support: |x| < hy.

> First sequence of experiments, we have X;, i = 1,--- , N from a
normal distribution (10, 3) and have selected values of @ = 0.05
and ¢ = 0.2. The optimal u* = 14.5048 is determined by numerical
integration resulting in the “true" ¥y = 15.5163 as the estimated risk.
The bandwidth recommended for a kernel density estimator for the
normal distribution is 1.066 N5 with & being the sample variance.

» In a second series of experiments, we used the t distribution with

various degrees of freedom v such as 6, 8 and 60, with the data shifted
to have the same mean of 10 as the normal simulated data before.
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Numerical Results for AVaR, 5, Uniform kernel

Bias
hN Ap—1
N M 1.060N" 5 0.5 0.35 0.2 0.05 SAA
100 5000 0.0489 -0.0105 | -0.0395 | -0.0601 -0.071 -0.0719
200 5000 0.0495 0.018 -0.0091 -0.0277 | -0.0374 | -0.0382
500 5000 0.0412 0.0353 0.0095 -0.0076 | -0.0159 | -0.0166
Variance
hn A1
N M 1.060 N5 0.5 0.35 0.2 0.05 SAA
100 5000 0.1713 0.1723 0.177 0.1804 | 0.1824 | 0.1826
200 5000 0.087 0.0866 0.089 0.0908 | 0.0917 | 0.0918
500 5000 0.0364 0.0358 | 0.0368 | 0.0375 0.0379 | 0.0379

Darinka Dentcheva
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Numerical Results for AVaR, o5, Epanechnikov kernel

Bias
hN An—1
N M 1.060N" 5 0.5 0.35 0.2 0.05 SAA
100 500 -0.0135 -0.0496 | -0.0679 | -0.0807 | -0.0873 | -0.0878
200 500 0.0118 -0.0074 -0.024 -0.0354 | -0.0414 | -0.0419
500 500 0.0181 0.0146 -0.0009 | -0.0112 -0.016 -0.0163

Variance

hw 0.5 0.35 0.2 0.05 SAA

M | 1.066N"3

100 500 0.1832 0.1763 | 0.1792 | 0.1816 | 0.183 | 0.1832
200 500 0.0889 0.0887 | 0.0902 | 0.0912 | 0.0917 | 0.0918
500 500 0.0398 0.0394 0.04 0.0404 | 0.0406 | 0.0406

Sample-based Composite Optimization
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Numerical Results for AVaR; ,, uniform kernel

Bias
hN An—1
N M 1.060N" 5 0.5 0.35 0.2 0.05 SAA
100 500 0.0324 -0.0057 | -0.0237 | -0.0359 -0.042 -0.0425
200 500 0.0448 0.0243 0.0071 -0.0043 | -0.0098 | -0.0103
500 500 0.0328 0.0289 0.0118 0.0007 -0.0045 | -0.0163
Variance
hN AN —1
N M 1.060 N5 0.5 0.35 0.2 0.05 SAA

100 500 0.0701 0.0684 | 0.0693 | 0.0699 | 0.0702 | 0.0702

200 500 0.0342 0.0332 | 0.0336 | 0.0339 0.034 0.034

500 500 0.0153 0.0149 | 0.0151 0.0152 | 0.0153 | 0.0153

Darinka Dentcheva
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Numerical Results for AVaR, ,, Epanechnikov kernel

Bias

M 1.065N_% 0.5 0.35 0.2 0.05 SAA

100 500 0.0035 -0.0198 | -0.0303 | -0.0384 | -0.0422 | -0.0425
200 500 0.0233 0.0111 0.0111 -0.0066 -0.01 -0.0103
500 500 0.0179 0.0155 0.0052 | -0.0015 | -0.0046 | -0.0163

Variance

M | 1.066N73 | 05 0.35 0.2 005 | SAA

100 500 0.0701 0.0691 | 0.0693 0.07 0.0702 | 0.0702
200 500 0.0341 0.0336 | 0.0336 | 0.0339 0.034 0.034
500 500 0.0153 0.0151 | 0.0152 | 0.0153 | 0.0153 | 0.0153
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Numerical results for N (10, 3), g = 2, and « = 0.05

Uniform Kernel

N | Kernel Bias | Empirical Bias | Kernel Variance | Empirical Variance
100 -0.6095 -1.1896 0.5893 0.5754
200 -0.3930 -0.7891 0.5132 0.5350
500 -0.1655 -0.3236 0.3482 0.4099
Epanechnikov Kernel
N | Kernel Bias | Empirical Bias | Kernel Variance | Empirical Variance
100 -0.7254 -1.1896 0.5813 0.5754
200 -0.4852 -0.7891 0.5168 0.5350
500 -0.2164 -0.3236 0.3641 0.4099
Gaussian Kernel
N | Kernel Bias | Empirical Bias | Kernel Variance | Empirical Variance
100 -0.6095 -1.1896 0.5893 0.5754
200 -0.3930 -0.7891 0.5132 0.5350
500 -0.1655 -0.3236 0.3482 0.4099

Darinka Dentcheva
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Numerical results for N (10, 3), g = 2, and « = 0.05

Wavelet-based estimator

Darinka Dentcheva

N | Wavelet | Empirical | Wavelet | Empirical
Bias Bias Variance | Variance
100 -0.6430 -1.1668 0.6054 0.6375
200 | -0.3728 -0.7677 0.4879 0.5382
500 -0.1016 -0.2996 0.2842 0.3525
@ Sample-based Composite Optimization



Numerical results for the t distribution

Uniform kernel

N | dg | Kernel | Empirical | Kernel | Empirical
Bias Bias Variance | Variance
100 | 6 | -1.9800 -2.1343 1.3440 1.3150
200 | 6 | -1.4528 -1.5649 1.5973 1.5886
500 | 6 | -0.7694 -0.7952 1.6350 1.6624
100 | 8 | -1.4044 -1.5452 1.2057 1.1805
200 | 8 | -0.9433 -1.0468 1.2299 1.2207
500 | 8 | -0.4875 -0.5126 1.0281 1.0460
100 | 60 | -0.6193 -0.7367 0.2529 0.2457
200 | 60 | -0.3776 -0.4642 0.2168 0.2158
500 | 60 | -0.1513 -0.1789 0.1687 0.1768

@

Darinka Dentcheva Sample-based Composite Optimization



Numerical results for the t distribution

Epanechnikov kernel

N | dg | Kernel | Empirical Kernel Empirical
Bias Bias Variance | Variance
100 6 -2.0119 -2.1343 1.3370 1.3150
200 | 6 | -1.4790 -1.5649 1.5954 1.5886
500 6 -0.7782 -0.7952 1.6435 1.6624
100 | 8 | -1.4336 -1.5452 1.1996 1.1805
200 8 -0.9675 -1.0468 1.2299 1.2207
500 | 8 | -0.4960 -0.5126 1.0336 1.0460
100 | 60 | -0.6436 -0.7367 0.2510 0.2457
200 | 60 | -0.3979 -0.4642 0.2166 0.2158
500 | 60 | -0.1606 -0.1789 0.1710 0.1768
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Numerical results for the t distribution

Wavelet-based estimator

N | df | Wavelet | Empirical | Wavelet | Empirical
Bias Bias Variance | Variance
100 | 6 -1.6239 -2.1477 1.3681 1.4114
200 | 6 -1.2090 -1.5892 1.4265 1.4979
500 | 6 -0.5870 -0.7453 1.9387 2.1290
100 | 8 -1.0266 -1.5532 0.9092 0.9622
200 | 8 -0.6814 -1.0694 0.9434 1.0175
500 | 8 -0.3029 -0.480 1.0214 1.1519
100 | 60 | -0.2176 -0.7692 0.2182 0.2506
200 | 60 | -0.0788 -0.5058 0.1745 0.2171
500 | 60 0.0490 -0.2092 0.0935 0.1366
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