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Statistical estimation via hypo-approximation
Motivation

Motivational example: Unmanned Underwater Vehicle
Consider an UUV returning to a docking station
after a mission.

• UUV knows the location of the station on the
map, but it has only a notion about its own
location.

• The docking station sends out pings that can
be picked up by the UUV when close enough.

The UUV uses these pings to improve the estimate of its own location.

• The UUV has an accurate model (in the short term) for its location, given its initial
condition.�� ��we are interested in modeling the position of the UUV

(note that GPS does not work under deep water)
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Figure: UUV scheme
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A Statistical Estimation
Problem



Statistical estimation via hypo-approximation
Statistical estimation

Statistical estimation
Estimation problems

We consider an estimation
problem as a decision
making process over

the probability distribution of
a random variable, based on
observed information, and,

eventually, prior knowledge.

This can be seen as a
Statistical estimation

problem
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�� ��Where is our UUV?



Statistical estimation via hypo-approximation
Statistical estimation

Mathematical program for the UUV position problem
Consider the following 2-dimensional model:

• Let {xiT} be the sample for the position of the UUV
Let FT be the empirical CDF of the uuv location
Let {y1, . . . , yT} be the ping data (noisy).

• Let f be the funtion that models the location changes (Dubin’s model) given the
initial conditions,
Propagate the position model from y as zTT = yT , zT−1

T = f (yT−1),...,z1
T = f (t)(y1).

Let GT be the empirical CDF of {ztT : t = 1, . . . , T}.

�

�

�

�
Estimation problem
Find F̂ ∈ F such that

F̂ ∈ argmin
F∈C⊂F

{
dl(F, FT )

∣∣∣ dl(F, GT ) ≤ ηT

}
´
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Statistical estimation via hypo-approximation
Statistical estimation

Estimation with contextual estimation (1/2)
Following in the tradition of M-estimators,
�nd best estimate according to criterion (sq.error, likelihood, etc)

F̂ ∈ argmin
F∈F

{
ρ(X, F )

∣∣∣ F ∈ C},
where X = (X1, . . . , Xn) are random vector

We are addressing two main challenges:

general constraints (C) and abstract spaces (F )

In the past, non parametric statistics has dealt with speci�c constraints (log-concave or
monotone distributions)
Applications:

Least squares ρ(X, y, F ) = ‖y− F (X )‖2

Maximum likelihood ρ(X, F ) = − log(F (X ))
Support vector machine ρ(X, y, F ) = max{0, 1− yF ′(X )}
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Statistical estimation

Estimation with contextual estimation (2/2)
We are considering the original constrained M-estimator problem

F̂ ∈ argmin
F∈C⊂F

ρ(X, F ),

with F in a general metric space (abstract representations, models)
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Estimation with contextual estimation (2/2)
We are considering the original constrained and robust M-estimator problem

F̂ ∈ argmin
F∈C⊂F

sup
G∈G (F )

ρ(X, F, G),

with F in a general metric space (abstract representations, models)
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Estimation with contextual estimation (2/2)
We are considering the original constrained and robust M-estimator problem

F̂ ∈ argmin
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sup
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ρ(X, F, G),

with F in a general metric space (abstract representations, models)

Examining
existence, approximation, consistency, formulations...
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Estimation with contextual estimation (2/2)
We are considering the original constrained and robust M-estimator problem

F̂ ∈ argmin
F∈C⊂F

sup
G∈G (F )

ρ(X, F, G),

with F in a general metric space (abstract representations, models)

Examining
existence, approximation, consistency, formulations...

Approximation?

F̂ ν ∈ εν − argmin
F∈Cν⊂F ν

sup
G∈G ν(F )

ρν(X, F, G)

when ν→∞, (εν → 0), F̂ ν → F̂?
Lopsided convergence [Royset, Wets 2017]
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Space selection and
Approximation

�

�

�

�
Estimation problem
Find F̂ ∈ F such that

F̂ ∈ argmin
F∈C⊂F

{
dl(F, FT )

∣∣∣ dl(F, GT ) ≤ ηT

}



Statistical estimation via hypo-approximation
Approximation of the estimation problem

First step: Space selection F

We need a class functions that is

• �exible, but avoid over�tting and high errors

• simple, but able to identify key characteristics

• incorporate soft (auxiliary) information and assumptions

• computationally tractable

• facilitate analysis

Possibilities:

• F (x) = 〈α, x〉 + β, (a�ne)

• F (x) =
∑

ciφi(x) (kernel)

• Lp, Sobolev, ...

• parametric (�nite-dim); nonparametric (∞-dim)
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Statistical estimation via hypo-approximation
Approximation of the estimation problem

Upper semi-continuous functions (usc)�
�

�



Let F be the space of upper-semi continuous functions,
nondecreasing, [l1, u1]× [l2, u2] ⊂ IR2 → [0, 1].

F usc ⇐⇒ ∀x lim sup
xν→x

F (xν) ≤ F (x)

ξ

ξ 0

F
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Statistical estimation via hypo-approximation
Approximation of the estimation problem

Second step: Topology
Why is it important?

We need a precise notion of proximity for approximation.
We base our approach on set convergence.
De�ne the hypograph of a function F : IR2 → IR as

hypo(F ) = {(x, α) : α ≤ F (x), x ∈ IRd, α ∈ IR}.

−2 −1 0 1 2

x

0.0

0.2

0.4

0.6

0.8

1.0

hypoF
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Statistical estimation via hypo-approximation
Approximation of the estimation problem

Hypo-Convergence (Attouch-Wets on hypographs)

Hypo-Convergence�� ��{F ν} hypo-converges to F iif

�
�

�



hypo(F ν) converges to hypo(F )
as sets (Painlevé-Kuratowski)

Prop: Weak convergence compatibility�� ��{F ν} hypo-converges to F then*
�� ��{F ν} converges weakly to F

Prop: A metrizable topology
The hypo-convergence can be metrized by the Attouch-Wets distance dl
For closed and bounded C ⊂ F , (C, dl) is a compact metric space
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Statistical estimation via hypo-approximation
Approximation of the estimation problem

Attouch-Wets distance in the space of usc-cdf
dl(F, G) :=

∫ ∞
0

dlρ(F, G)e−ρ dρ, dlρ(F, G) := max
‖ξ‖S≤ρ

{|dist(ξ, hypoF )− dist(ξ, hypoG)|}

ξ

ξ 0

(ξ, ξ0) ρ

ρ

dist((ξ, ξ0), hypoF )

dist((ξ, ξ0), hypoG) = 0

hypoG
hypoF

Deride- julio.deride@usm.cl Statistical estimation via hypo-approximation 15/34



Statistical estimation via hypo-approximation
Approximation of the estimation problem

Properties

• (usc− fcns(IRm), dlh) is a complete separable metric space.
• {gν} ⊆ usc− fcns(IRm) hypo-converge to g ∈ usc− fcns(IRm) if dlh(gν, g)→ 0.

Equivalently

gν→h g ⇐⇒

∀ξ ν → ξ, lim sup gν(ξ ν) ≤ g(ξ )

∀ξ,∃ξ ν → ξ, such that lim inf gν(ξ ν) ≥ g(ξ )

• usc− fcns(IRm) is not a linear space, but it is a pointed cone.
A cone K ⊂ IRn is pointed if it cointains no lines, i.e., if x ∈ K and−x ∈ K then x = 0.

Hypo-convergence of Empirical distribution
If {ξ ν} iid rv with distribution F , then

F ν(·, ω) =
1
ν

ν∑
j=1

I{ξ j (ω)≤·}→h F a.s.
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Statistical estimation via hypo-approximation
Approximation of the estimation problem

Weak-limit is a distribution?... Tightness

Tightness
A subset S ⊂ D is tight of for all ε > 0, there exists a rectangle A such that ∆AF ≥ 1− ε

for all F ∈ S

Convergence to distribution functions
If {F ν} ⊂ D is tight then

• There exists a {F νk}, F such that dlh(F νk , F )→ 0, as k→∞.

• If F : IRm → IR is the hypo-limit of {F ν}, then F ∈ D .

Compactness and Tightness
For S ⊂ D

• if S compact then S tight.

• If S is tight, then clS is compact and contained in D .
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Statistical estimation via hypo-approximation
Approximation of the estimation problem

Constraint examples: Moments

Convexity under moment information
The ambiguity set with constrained moments

F (x) =
{
F ∈ D :

∫
ξ k dF (ξ ) = ak(x), k = 1, . . . , K

}
is convex due to linearity of the integral.

Deride- julio.deride@usm.cl Statistical estimation via hypo-approximation 18/34



Statistical estimation via hypo-approximation
Approximation of the estimation problem

Constraint examples: Ambiguity sets

Ambiguity sets under moment information
Given µ1 < µ2 and s > 0, the ambiguity set of distributions

Fµ1 ,µ2 ,s =
{
F ∈ D : F has mean in [µ1, µ2], and stdv in [0, s]

}
is tight and for every r > 0, ∃νr and F 1, . . . , F νr such that

{F 1, . . . , F νr} ⊂ Fµ1 ,µ2 ,s ⊂
νr⋃
ν=1

IB(F ν, r).

Proof. Thightnes is given by Chebyshev’s inequality. This implies compactness.
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ARobust CDF Estimation
Problem

(getting back to the UUV position estimation)



Statistical estimation via hypo-approximation
Robust estimation

Back to our CDF estimation problem�

�

�

�
Estimation problem
Find F̂ ∈ F such that

F̂ ∈ argmin
F∈C⊂F

{
dl(F, FT )

∣∣∣ dl(F, GT ) ≤ ηT

}

Some of the di�culties for solving this problem

• Selection of F , continuous? usc

• Set of constraints C to be considered (maintaining closedness)
• Explicit computation of dl is hard

dl(F, G) :=
∫ ∞

0
dlρ(F, G)e−ρ dρ, dlρ(F, G) := max

‖ξ‖S≤ρ
{|d(ξ, hF )− d(ξ, hG)|}

Deride- julio.deride@usm.cl Statistical estimation via hypo-approximation 21/34



Statistical estimation via hypo-approximation
Robust estimation

Back to our CDF estimation problem�

�

�

�
Estimation problem
Find F̂ ∈ F such that

F̂ ∈ argmin
F∈C⊂F

{
dl(F, FT )

∣∣∣ dl(F, GT ) ≤ ηT

}
Some of the di�culties for solving this problem

• Selection of F , continuous? usc

• Set of constraints C to be considered (maintaining closedness)
• Explicit computation of dl is hard

dl(F, G) :=
∫ ∞

0
dlρ(F, G)e−ρ dρ, dlρ(F, G) := max

‖ξ‖S≤ρ
{|d(ξ, hF )− d(ξ, hG)|}

�� ��Approximation?

Deride- julio.deride@usm.cl Statistical estimation via hypo-approximation 21/34



Statistical estimation via hypo-approximation
Robust estimation

Back to our CDF estimation problem�

�

�

�
Estimation problem
Find F̂ ∈ F such that

F̂ ∈ argmin
F∈C⊂F

{
dl(F, FT )

∣∣∣ dl(F, GT ) ≤ ηT

}
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• Selection of F , continuous? usc← epi-splines 1©
• Set of constraints C to be considered (maintaining closedness)← so far, C = F 2©
• Explicit computation of dl is hard← use approximation d̂l 3©

dl(F, G) :=
∫ ∞

0
dlρ(F, G)e−ρ dρ, dlρ(F, G) := max
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Statistical estimation via hypo-approximation
Robust estimation

Approximation 1©: Epi-splines

• R = [l, u] = [l0, u0]× [l1, u1]: bounded rectangular domain
• F ν: 1-degree epi-splines (piecewise a�ne functions) over a triangular partition of

the domain.
• Rν = {Rkj}N

ν
0N

ν
1

11 , each Rkj divided into two triangles,
• Each function F ∈ F ν is represented by the values that it takes on vertices of each

triangular region (zl0, zl1, zl2) and (zu0, zu1 , zu2)
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Statistical estimation via hypo-approximation
Robust estimation

Approximation 2©: Constraints
We can consider constraints such as

• Distribution
• Concavity, Monotonicity
• Continuity, Lipschitz
• Pointwise bounds
• Stochastic dominance (under study)
• (central) Moments bounds�
�

�
�this family of constraints is closed under (F , dl)

Thus, �
�

�
�

C ⊂ F is compact, and therefore
argmin
F∈C

dl(F, F0) 6= ∅ ← Existence of solution
guaranteed
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Statistical estimation via hypo-approximation
Robust estimation

Approximation 3©: Distance bounds
Let F be a CDF over R, partitioned into sub-rectangular elements Rk

Bounds for the hypo-distance [Royset,2019]
For ρ ≥ 1, and multivariate CDF F and G de�ned over R

dl(F, G) ≤ e−ρ + inf

{
η ≥ 0

∣∣∣∣∣ G
(
lk + η1

)
+ η ≥ F (uk)

F
(
lk + η1

)
+ η ≥ G(uk), ∀k = 1, . . . , N

}
︸ ︷︷ ︸

dlν

where (lk, uk), k = 1, . . . , N are points in the box 4ρIB∞.

Discrete space approximation
We embed our problem onto the usc functions, endowed with the hypo-topology, i.e.,

(F = usc− fcn(IRd), dl)← (F ν, dlν)
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Approximation 3©: Distance bounds
Let F be a CDF over R, partitioned into sub-rectangular elements Rk

Bounds for the hypo-distance [Royset,2019]
For ρ ≥ 1, and multivariate CDF F and G de�ned over R

dl(F, G) ≤ e−ρ + inf
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η ≥ 0

∣∣∣∣∣ G
(
lk + η1

)
+ η ≥ F (uk)

F
(
lk + η1

)
+ η ≥ G(uk), ∀k = 1, . . . , N

}
︸ ︷︷ ︸

dlν

where (lk, uk), k = 1, . . . , N are points in the box 4ρIB∞.

Discrete space approximation
We embed our problem onto the usc functions, endowed with the hypo-topology, i.e.,

(F = usc− fcn(IRd), dl)← (F ν, dlν)

Deride- julio.deride@usm.cl Statistical estimation via hypo-approximation 24/34



Statistical estimation via hypo-approximation
Robust estimation

Approximation - Convergence�
�

�
�

True problem
min

F∈C⊂F
{dl(F, FT ) | dl(F, GT ) ≤ ηT}

⇑ hypo'

&

$

%

Approximate problems

min
F∈Cν⊂F ν

η ≥ 0

∣∣∣∣∣∣∣∣∣
F
(
lk + η1

)
+ η ≥ FT (uk)

FT
(
lk + η1

)
+ η ≥ F (uk)

F
(
lk + ηT 1

)
+ ηT ≥ GT (uk)

GT

(
lk + ηT 1

)
+ ηT ≥ F (uk), ∀k = 1, . . . , N


Also lower bound; computation by bisection search
And modeling of contextual information (continuity, Lipschitz)
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Computational advantages/challenges
Summarizing, the proposed approximation has the following features:

• We solve a sequence of linear problems

• but the size of the problem depends on the size of the mesh

• still, we can solve them e�ciently by using state-of-the-art solvers

• and, more important, we can add constraints to the problem formulation.

• Notice that we are still constrained on the dimensionality of the distribution (work
in progress)
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Algorithm: Bisection method�
�

�



UUV Estimation problem
F̂ ∈ argmin

F∈C⊂F

{
dl(F, FT )

∣∣∣ dl(F, GT ) ≤ ηT

}

• Set ηl = 0, ηu = η0 and 0 < ηT < 1.

• While: s < ε1 or |ηl − ηu| > ε2

I Set η = ηl+ηu
2 and solve

max
s≥0,F

s (1)

s.t F
(
xu,2lj

)
≤ F0

(
xl,1lj + η1

)
+ η + s (2)

F0

(
xl,2lj

)
≤ F

(
xlj + η1

)
+ η + s (3)

F
(
xu,2lj

)
≤ G0

(
xl,1lj + ηT 1

)
+ ηT + s (4)

G0

(
xl,2lj

)
≤ F

(
xlj + ηT 1

)
+ ηT + s (5)

F ∈ C (6)

I If the problem is infeasiable, set ηl = η, else set ηu = η
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Two uniform distributions

Figure: FT ∼ U [0, 2]× [0, 2] (blue)
GT ∼ U [0.5, 1.5]× [0.5, 1.5] (orange) Figure: Solution with Lip = 0.3
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Two uniform distributions

Figure: FT ∼ U [0, 2]× [0, 2] (blue)
GT ∼ U [0.5, 1.5]× [0.5, 1.5] (orange) Figure: Solution with Lip = 0.4
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Two uniform distributions

Figure: FT ∼ U [0, 2]× [0, 2] (blue)
GT ∼ U [0.5, 1.5]× [0.5, 1.5] (orange) Figure: Solution with Lip = 0.5
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UUV: Sample and estimated position ({xTi }i, {zTj }j)

Figure: Sample data ({xTi } (FT ) and estimated data {zTj })
(GT ) Figure: Solution F̂, ηT = 0.01
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UUV: Sample and estimated position ({xTi }i, {zTj }j)

Figure: Sample data ({xTi } (FT ) and estimated data {zTj })
(GT ) Figure: Solution F̂, ηT = 0.1
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UUV: Sample and estimated position ({xTi }i, {zTj }j)

Figure: Sample data ({xTi } (FT ) and estimated data {zTj })
(GT ) Figure: Solution F̂, ηT = 0.9
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The end

Thank you for your attention
Questions?
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