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Statistical estimation via hypo-approximation

Motivation

Motivational example: Unmanned Underwater Vehicle

Consider an UUV returning to a docking station

after a mission.
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Motivation

Motivational example: Unmanned Underwater Vehicle

Consider an UUV returning to a docking station
after a mission.
e UUV knows the location of the station on the
map, but it has only a notion about its own

location.

* The docking station sends out pings that can

be picked up by the UUV when close enough.
The UUV uses these pings to improve the estimate of its own location.

* The UUV has an accurate model (in the short term) for its location, given its initial

( )

(note that GPS does not work under decp water)

condition.
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Statistical estimation via hypo-approximation

Statistical estimation

Statistical estimation

Estimation problems

We consider an estimation
problem as a decision
making process over
the probability distribution of
a random variable, based on

,and,

eventually, prior knowledge.

This can be seen asa
STATISTICAL ESTIMATION

PROBLEM
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Statistical estimation via hypo-approximation

Statistical estimation

Mathematical program for the UUV position problem

Consider the following 2-dimensional model:

* Let {x’} be the sample for the position of the UUV
Let Fr be the empirical CDF of the uuv location
Let {y,..., 7"} be the ping data (noisy).

* Let f be the funtion that models the location changes (Dubin’s model) given the
initial conditions,
Propagate the position model from yas 2/ = y', 217" = £(5771),...24 = FO().
Let Gy be the empirical CDF of {2 : t = 1,..., T'}.

&
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Statistical estimation via hypo-approximation

Statistical estimation

Mathematical program for the UUV position problem

Consider the following 2-dimensional model:

* Let {x’} be the sample for the position of the UUV
Let Fr be the empirical CDF of the uuv location
Let {y,..., 7"} be the ping data (noisy).

* Let f be the funtion that models the location changes (Dubin’s model) given the
initial conditions,
Propagate the position model from yas 2/ = y', 217" = £(5771),...24 = FO().
Let Gy be the empirical CDF of {2 : t = 1,..., T'}.

ESTIMATION PROBLEM
Find F € .% such that

F € argmin {zﬂ(F, Fr)|d(F, G7) < ;7T}
FECCT
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Statistical estimation via hypo-approximation

Statistical estimation

Estimation with contextual estimation (1/2)

Following in the tradition of A -estimators,

find best estimate according to criterion (sq.error, likelihood, etc)

Fe argmin {f(X, F) ‘ F e C},
FEF

where X = (X3,..., X)) are random vector
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Statistical estimation

Estimation with contextual estimation (1/2)

Following in the tradition of A -estimators,

find best estimate according to criterion (sq.error, likelihood, etc)
Fe argmin {ﬂ(X, F) ‘ Fe C},
FeF

where X = (X3,..., X)) are random vector

We are addressing two main challenges:
general constraints (C) and abstract spaces (%)

In the past, non parametric statistics has dealt with specific constraints (log-concave or

monotone distributions)
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Statistical estimation

Estimation with contextual estimation (1/2)

Following in the tradition of A -estimators,

find best estimate according to criterion (sq.error, likelihood, etc)
Fe argmin {ﬁ(X, F) ‘ Fe C},
FeF

where X = (X3,..., X)) are random vector

We are addressing two main challenges:
general constraints (C) and abstract spaces (%)

In the past, non parametric statistics has dealt with specific constraints (log-concave or

monotone distributions)

Applications:
Least squares PX 9y F) = |ly — F(X)||?
Maximum likelihood (X, F) = — log(F(X)) |

FEDERICO SANTA MARIA

Support vector machine . p(X, y, F) = max{0,1 — yF'(X)}



Statistical estimation via hypo-approximation

Statistical estimation

Estimation with contextual estimation (2/2)

We are considering the original constrained A4-estimator problem

Fe argmin p(X, F),
FECCF

with F in a general metric space (abstract representations, models)
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Statistical estimation via hypo-approximation

Statistical estimation

Estimation with contextual estimation (2/2)

We are considering the original constrained and robust A{-estimator problem

Fe argmin sup p(X, 5 G),
FECCF GEY(F)

with F in a general metric space (abstract representations, models)
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Statistical estimation

Estimation with contextual estimation (2/2)

We are considering the original constrained and robust M -estimator problem
F € argmin sup p(X, F G),
FECC.F GEY(F)
with F in a general metric space (abstract representations, models)
Examining

existence, approximation, consistency, formulations...
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Statistical estimation

Estimation with contextual estimation (2/2)

We are considering the original constrained and robust M -estimator problem
Fe argmin sup p(X, 5 G),
FECC.F GEY(F)
with F in a general metric space (abstract representations, models)
Examining
existence, approximation, consistency, formulations...

Approximation?

e — argmin  sup p'(X, i G)
FEC'CF* GEY(F)

when v — 00, (¢ — 0), 7 — F?

“

Lopsided convergence [Royset, Wets 2017] UNIVERSIDAD TECNICA

FEDERICO SANTA MARIA



SPACE SELECTION AND
APPROXIMATION

ESTIMATION PROBLEM
Find £ € .Z such that
Fe argmin {aﬂ(F, Fr) ‘ d(E, Gr) < ;7T}

FeCCHF




Statistical estimation via hypo-approximation

Approximation of the estimation problem

First step: Space selection .7

We need a class functions that is
* flexible, but avoid overfitting and high errors
* simple, but able to identify key characteristics
* incorporate soft (auxiliary) information and assumptions
* computationally tractable

* facilitate analysis
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Statistical estimation via hypo-approximation

Approximation of the estimation problem

First step: Space selection .7

We need a class functions that is
* flexible, but avoid overfitting and high errors
* simple, but able to identify key characteristics
* incorporate soft (auxiliary) information and assumptions
* computationally tractable
* facilitate analysis
Possibilities:
* F(x) = (& x) + 5, (affine)
* F(x) = 3 cipi(x) (kernel)
* L, Soboley, ...

* parametric (finite-dim); nonparametric (co-dim)

UNI NICA
FEDERICO SANTA MARIA



Statistical estimation via hypo-approximation

Approximation of the estimation problem

Upper semi-continuous functions (usc)

Let .# be the space of upper-semi continuous functions,
nondecreasing, [/, #1] X [lo, u2] C R* = [0, 1].

Fusc < Vx limsup F(x") < F(x)

X=X

UNIVERSIDAD TECNICA
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Statistical estimation via hypo-approximation
Approximation of the estimation problem

Second step: Topology

Why is it important?
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Second step: Topology

Why is it important?
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Statistical estimation via hypo-approximation

Approximation of the estimation problem

Second step: Topology

Why is it important?

We need a precise notion of proximity for approximation.

We base our approach on set convergence.
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Statistical estimation via hypo-approximation

Approximation of the estimation problem

Second step: Topology

Why is it important?

We need a precise notion of proximity for approximation.
We base our approach on set convergence.
Define the hypograph of a function F : R* — R as

hypo(F) = {(%, ) : « < F(x),x € R, 2 € R}.

hypo F'

UNIVERSIDAD TECNICA
FEDERICO SANTA MARIA



Statistical estimation via hypo-approximation

Approximation of the estimation problem

Hypo-Convergence (Attouch-Wets on hypographs)

Hypo-Convergence

({F "} hypo-converges to F J iif hypo(£”) converges to hypo(F)

as sets (Painlevé-Kuratowski)
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Statistical estimation via hypo-approximation

Approximation of the estimation problem

Hypo-Convergence (Attouch-Wets on hypographs)

Hypo-Convergence

as sets (Painlevé-Kuratowski)

({F "} hypo-converges to F J iif [ hypo(£”) converges to hypo(F) ]

Prop: Weak convergence compatibility
({F "} hypo-converges to F J then* ({F "} converges weakly to F ]

Prop: A metrizable topology

The hypo-convergence can be metrized by the Attouch-Wets distance o/
For closed and bounded C C %, (C, d) is a compact metric space

“
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Statistical estimation via hypo-approximation

Approximation of the estimation problem

Attouch-Wets distance in the space of usc-cdf

d(E,G) = / A(EG)e*dp,  d,(EG) :=

&o

max
£l <

p{ |dist(§ hypoF) — dist(§ hypoG)| }

hypo

dist((&, &), hypo

0 H

S

“
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Statistical estimation via hypo-approximation

Approximation of the estimation problem

Properties

* (usc — fens(R™), dlh) is a complete separable metric space.

* {¢’} C usc — fens(R™) hypo-converge to ¢ € usc — fens(R™) if aﬂh(g”, g) —

Equivalently

Dy e V& — & limsup g”(£”) < ¢(£)
£ V& 387 — & such that liminf g"(£7) > ¢(£)

* usc — fens(R™) is not a linear space, but it is a pointed cone.
AconeK C R" is pointed if it cointains no lines, i.c., if x € Kand —x € K thenx = 0.
Hypo-convergence of Empirical distribution
If {£”} iid rv with distribution F, then

F(, w) Z[{fj <}—>Fa.s
]1

0.

UNIVERSIDAD TECNICA
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Statistical estimation via hypo-approximation

Approximation of the estimation problem

Weak-limit is a distribution?... Tightness

Tightness
A subset§ C Z is tight of for all ¢ > 0, there exists a rectangle 4 such that AyF > 1 —¢
foralFe §
Convergence to distribution functions
If {F"} C Z istight then
* There exists a { F* }, F such that cﬂb(F %, F) — 0,as k — oo.
« IfF : R™ — R is the hypo-limit of {F”}, then F € 9.

Compactness and Tightness
For§C 9
* if § compact then § tight.

“

UNIVERSIDAD TECNICA
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Statistical estimation via hypo-approximation

Approximation of the estimation problem

Constraint examples: Moments

Convexity under moment information

The ambiguity set with constrained moments

F(x) = {F cP: /f’“dF(f) = a(x) k=1,...

is convex due to linearity of the integral.

UNIV] TECNICA
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Statistical estimation via hypo-approximation

Approximation of the estimation problem

Constraint examples: Ambiguity sets

Ambiguity sets under moment information

Given yy < o and s > 0, the ambiguity set of distributions
P s = {F € 2 : Fhasmeanin [y, ], and stdv in [0, :]}

is tight and for every » > 0, 3», and FY ..., F” such that

{F',.. . F"} C Py €| B, 7).

y=1

Proof. Thightnes is given by Chebyshev’s inequality. This implies compactness.

“
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A RoBusT CDF ESTIMATION
PROBLEM

(getting back to the UUV position estimation)



Statistical estimation via hypo-approximation

Robust estimation

Back to our CDF estimation problem

ESTIMATION PROBLEM
Find F € .% such that

Fe argmin {d(F, Fr) ‘ d(F, Gr) < 77T}
FECCTF

“
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Statistical estimation via hypo-approximation

Robust estimation

Back to our CDF estimation problem

ESTIMATION PROBLEM
Find ¥ € .% such that

F & argmin {d(E Fp)| d(E 1) < g1}
FeECCF

Some of the difficulties for solving this problem
* Selection of .%, continuous? usc
* Set of constraints C to be considered (maintaining closedness)

* Explicit computation of d is hard

UEG) = [T AUECT dn dEG) = max {ldlEhe) — & ho)l)

(Approvimaion] B

UNIVERSIDAD TECNICA
FEDERICO SANTA MARIA
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Statistical estimation via hypo-approximation

Robust estimation

Back to our CDF estimation problem

ESTIMATION PROBLEM
Find ¥ € .% such that

F & argmin {d(E Fp)| d(E 1) < g1}
FeECCF

Some of the difficulties for solving this problem
* Selection of .%, continuous? usc
* Set of constraints C to be considered (maintaining closedness)

* Explicit computation of d is hard

UEG) = [T AUECT dn dEG) = mas {1dlEhe) — e ho)l)

(Approvimaion] B
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Statistical estimation via hypo-approximation

Robust estimation

Approximation (1): Epi-splines

* R = [}, u] = [lo, no] X [}, #1]: bounded rectangular domain

* 77 1-degree epi-splines (piecewise affine functions) over a triangular partition of
the domain.

* R = {Rkj}ﬁ?&Nf, each Ry; divided into two triangles,

* Each function F € F” is represented by the values that it takes on vertices of each
triangular region (2, 21, 25) and (%, 2%, 2%)

(0, 1)

Ryj

u u
& 21

!
B 1

(o, 1) —— (1) ho

ho

UNIVERSIDAD TECNICA
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Statistical estimation via hypo-approximation

Robust estimation

Approximation (2): Constraints

We can consider constraints such as
* Distribution
* Concavity, Monotonicity
* Continuity, Lipschitz
* Pointwise bounds
* Stochastic dominance (under study)

* (central) Moments bounds

( this family of constraints is closed under (%, d) ]

UNIVERSIDAD TECNICA
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Statistical estimation via hypo-approximation

Robust estimation

Approximation (2): Constraints

We can consider constraints such as
* Distribution
* Concavity, Monotonicity
* Continuity, Lipschitz
* Pointwise bounds
* Stochastic dominance (under study)

* (central) Moments bounds

) |

[ this family of constraints is closed under (%

Thus,

C C % is compact, and therefore

argmin d(F, Fy) # 0
FeC

“
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Statistical estimation via hypo-approximation

Robust estimation

Approximation (3): Distance bounds

Let F be a CDF over R, partitioned into sub-rectangular elements Ry,
Bounds for the hypo-distance [Royset,2019]
For p > 1, and multivariate CDF F and G defined over R

G (I +y1) + 5 > F(ub)

A(EG) < ¢ +infdy >0
(EG) < e +in {’7— F(F+q1)+y> Gb) VEk=1,...

)

d’

where (l/e, 1//6), k=1,..., N are points in the box 4p0B°°.

“
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Statistical estimation via hypo-approximation

Robust estimation

Approximation (3): Distance bounds

Let F be a CDF over R, partitioned into sub-rectangular elements Ry,
Bounds for the hypo-distance [Royset,2019]
For p > 1, and multivariate CDF F and G defined over R

d(E G) < e_f’+inf{;7 >0

G (I +y1) + 5 > F(ub)
F(lF+q1) +y> Gb), Vk=1,...,N

d&'
where (l/e, 1//6), k=1,..., N are points in the box 4p0B°°.

Discrete space approximation

We embed our problem onto the usc functions, endowed with the hypo-topology, i.c.,

(F = usc — fen(RY), dI)

“
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Statistical estimation via hypo-approximation

Robust estimation

Approximation - Convergence

TRUE PROBLEM
i d(F, Fr) | d(F, Gr) <
Feﬁcllcng{ (E Fr)|d(E Gr) < 57}

T hypo

F (lk + 771) +y > Fr(u*)
) Fr (lk + 771) +y > F(b)
reces |1 F(F+yr1) + 91 > Gr(e®)
Gr (*+7r1) + 97 > F(b), Vk=1,...,N

Also lower bound; computation by bisection search

“

And modeling of contextual information (continuity, Lipschitz) =
FEDERICO SANTA MARIA



Statistical estimation via hypo-approximation

Robust estimation

Computational advantages/challenges

Summarizing, the proposed approximation has the following features:
* We solve a sequence of linear problems
* but the size of the problem depends on the size of the mesh
* still, we can solve them efficiently by using state-of-the-art solvers
* and, more important, we can add constraints to the problem formulation.

* Notice that we are still constrained on the dimensionality of the distribution (work

in progress)

UNIVER| TECNICA
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Numerical example

Algorithm: Bisection method

UUV ESTIMATION PROBLEM
Fe argmin {(/ﬂF Fr) ‘ d(F, Gr) < 71}

FeCCF
* Sety;=0,7, =70and0 < y7 < 1.
* While:s < gy or |y — 74| > &2
P> Sety = W% and solve
max s
s>0,F
s.t (xlj)<F0 (’Cz +;71)+;7+.r

Fy (xl]) <F x1j-+7l) +y+s
F (foz) < Gy (xfjl +7Tl) + 1+ 5
Gy (xf]z) <F (xlj +;77<1) +9r +5

FecC

» Ifthe problem is infeasiable, set 7, = 7, else set 7, = 7

(1)

(2)
(3)
(4)

UNIVERSIDAD TECNICA
FEDERICO SANTA MARIA
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Statistical estimation via hypo-approximation

Numerical example

Two uniform distributions

s 0.23390541212227178
0.1

0.6

04

0.2

0.0

Figure: Fr ~ U[0, 2] X [0, 2] (blue)
Gr ~ U[0.5,15] x [0.5,15] (orange) Figure: Solution with Lip = 0.3

UNIVERSIDAD TECNICA
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Statistical estimation via hypo-approximation

Numerical example

Two uniform distributions

s 0.172
etaT :0.1
L 04

0.6

04

0.2

0.0

Figure: Fr ~ U[0, 2] X [0, 2] (blue)
Gr ~ U[0.5,15] x [0.5,15] (orange) Figure: Solution with Lip = 0.4

UNIVERSIDAD TECNICA
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Statistical estimation via hypo-approximation

Numerical example

Two uniform distributions

s 0.14663127165506562
etaT 0.

0.8

0.6

04

0.2

0.0

Figure: Fr ~ U[0, 2] X [0, 2] (blue)
Gr ~ U[0.5,15] x [0.5,15] (orange) Figure: Solution with Lip = 0.5

UNIVERSIDAD TECNICA
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WHERE 1s oUR UUV?



Statistical estimation via hypo-approximation

Numerical example

UUV: Sample and estimated position ({xl'}s, {z].T}j)

s 0.2078547212593228

1.0
2 ¢ ¢
¢ : s o S s % s
| & g}:\?‘ﬂix &
] g " oy & 06
o R (bt T
& o Ty %
L 50 v 04
1 S l
Lae P JJ\
ra
—2 & 0.2
-y ! : ; 1 5 00

Figure: Sample data ({/ } (Fr) and estimated data {ZJT}) .
(Gr) Figure: Solution F, 7 = 0.01
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Statistical estimation via hypo-approximation

Numerical example

UUV: Sample and estimated position ({xl'}s, {z].T}j)

st 0.24277765793781167
etaT :0.1

1.0
2 ¢ ¢
¢ : s o S s % s
| & g}:\?‘ﬂix &
] g " oy & 06
o R (bt T
& o Ty %
L 50 v 04
1 S l
Lae P JJ\
ra
—2 & 0.2
-y ! : ; 1 5 00

Figure: Sample data ({/ } (Fr) and estimated data {ij H .
(Gr) Figure: Solution F, 77 = 0.1

UNIVERSIDAD TECNICA
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Statistical estimation via hypo-approximation

Numerical example

UUV: Sample and estimated position ({xl'}s, {z].T}J-)

st 0.22471031031096245

1.0
2 ¢ ¢
: ¢ s S s . s
!
i ¢ W;;«%ﬁ H
§ g
¢ -,*;4' 8 ¢ 4 06
0 R et B
‘ PRl L v
‘ L 50 v 04
&
- L L
¢ 0.2
-2 ra
-y ! : ; 1 5 o

Figure: Sample data ({/ } (Fr) and estimated data {ZJT}) .
(Gr) Figure: Solution F, 77 = 0.9
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Statistical estimation via hypo-approximation

Numerical example

The end

Thank you for your attention
Questions?
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