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Clustering
Clustering if the process of partitioning a heterogeneous, unlabeled 
dataset into groups of similar samples.

Ubiquitous task in ML and statistics with applications to computer 
vision, data analysis, network analysis, genomics, among others.



The problem today
Model

We consider a Gaussian mixture of the form:

Equivalently,

Goal
Given a sample                 , we want to recover the labels     



Challenges

Make efficient use of statistical and computational resources.

We are interested in the case when the covariance is ill-conditioned. 

Spherical Ill-conditioned

Stretched mixtures

The de facto solutions (PCA and k-means) struggle in this setting.

Efficiency



How to measure separation?

Generalizing this to higher dimensions:

In one dimension a natural way to measure the signal-strength is
Baby steps

Signal-to-noise ratio



Statistical metrics

Minimum number of samples necessary to achieve Bayes-
optimal error.

Misclassification error

Sample complexity

The Bayes-optimal error
Baseline

If the labels are given the sample complexity is                  .
Baseline  



Questions

When the labels, mean, and covariance are unknown, is it 
possible to achieve the Bayes-optimal rate with (near) linear 
sample complexity?

If so, is there a computationally efficient estimator?

Statistical question

Computational question

Doesn’t seem possible unless more samples are provided. 

Yes, using an optimization problem over the discrete hypercube         .
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Numerical illustration: FashionMNIST
We sampled 1000 T-shirts/tops and Pullovers from FashionMNIST

and classified them with k-means and our new algorithm.

True labels k-means New algorithm

Misclassification rate: 44.7% and 7.1%.



Agenda

‣ Introduction 

‣ MAX-CUT formulation

‣ Efficient spectral algorithm

‣ Potential statistical-computational gap



Max-Cut formulation



Insight: Invariance

Then, we have

Let                          be an arbitrary nonsingular linear transformation

Key insight
Any estimator that depends on SNR has to be invariant.



Canonical form

There is a map                          such that:          
Lemma (Canonical form)

where                         are iid and independent from labels.

Intuition
Every datapoint has its label in the first component and noise 
everywhere else.



Intuition

Maximum likelihood estimator

Minimize the distance to the subpspace generated by

Define                     to be the projection onto the range of 

Lemma (From MLE to Max-Cut)
The MLE is given by the following problem over the hypercube:



Optimality of Max-Cut
Theorem (Max-Cut)

1. (Expected error)                         

2. (Probability of zero error)                         

Remarks.
1. Expected error matches Bayes-optimal error (up to the little-o term).

2. Separation holds with high probability if and only if 

Assume that                     and                                  . The solution of 
the Max-Cut problem satisfies:

3. Best known algorithm to solve Max-Cut takes exponential time.



Why is this Max-Cut instance hard? 
Natural ideas to solve the Max-Cut:

Issue: the leading eigenvector is not unique.

Spectral relaxation 

Semidefinite relaxation
Relax to a spectrahedron a la Goemans-Williamson (1995): 

Issue: Guarantees do not apply since     might have negative entries.

Relax the constrained set to a sphere:



Efficient algorithm



Two stage algorithm

- Stage 1: Initialization (spectral method) 
   Finds a point close to the solution.

- Stage 2: Local refinement (optimization) 
   Iterative algorithm that solves the optimization problem.

Strategy split the algorithm into two:

We want to solve the nonconvex problem:



Projected power iteration

This algorithm is simply alternating projections!

At each iteration we project onto a 
subspace and then onto the discrete 
hypercube.



Spectral algorithm

Key insight

where the vector      gives the optimal classifier for 

Once                   , the matrix concentrates around:



Global convergence guarantee

Theorem (Global convergence)

1. (Expected error)                         

2. (Probability of zero error)                         

Exactly the same guarantees as Max-Cut with quadratic sample 
complexity. 

Remark

Assume that                     ,                                  . Then:

Let     be the output of combining the spectral method and alternating 
projections algorithm.



A potential  
statistical-computational gap



A statistical-computational gap?
So far we have established that when                          , then  

We conjecture that no polynomial time algorithm performs better 
than a random guess in the regime:

Note that there is no statistical-computational gap when 



Caveat: Conjecture requires noise!
Recent papers by Zadik, Song, Wein, and Bruna (2021) and 
Diakonikolas and Kane (2022) disproved the conjecture when 
there is no noise, e.g., infinite SNR. 


Their result is based on Lenstra–Lenstra–Lovász lattice basis 
reduction and only require            samples.



A statistical-computational gap?
We collect three pieces of evidence: 

Reduction from a hard testing problem
We reduce the problem from a hypothesis testing problem 
believed to be hard in the regime               .  

Lower bound for sum-of-squares relaxations

We prove that SoS relaxations of the Max-Cut formulations fail 
when                  .  

Numerical evidence

Popular polynomial time methods seem to need                    . 



Numerical evidence
Recovery frequency with  

Max-Cut Semidefinite 
relaxation

Spectral + 
alternating 
projections

Expectation-
Maximization 
algorithm

Slope 2Slope 1



A hard testing problem
Strategy: reduce from a problem that we believe is hard.

Testing problem
We observe                   .  We want a test                                          
that can decide between two hypothesis:

Null hypothesis:
with i.i.d.

Alternative hypothesis:

with
unknown rotation.

We want a test with small Type I and Type II errors.



A family of spectral tests

Spectral methods lower bound

Informal theorem (Mao and Wein, 2021)

Assume that               . Any test                                           coming 
from the above family has to satisfy 

For a fixed degree    . Let                                  with polynomial entries

of degree at most     . Then, consider the test



A reduction from testing
Theorem (Reduction)

Assume that                   and                            . Then if there is an 
estimator for the clustering problem such that 

Then, one can construct a simple test                                          that 
achieves:

It is unlikely that there is a polynomial time estimator. 
Conclusion



Max-Cut Semidefinite relaxation

We can rewrite the Max-Cut as a linear program:

and LPs achieve their maximum at vertices.

Intuitively, we match all the second-moment information we have.

Observation

Obstruction: Optimizing over the Cut polytope is NP-hard.

Substitute      by a set with a tractable SDP representation
Idea (Goemans-Williamson 1995)

Cut polytope



Sum-of-squares relaxations
Sum-of-squares (Parrilo 2000, Laserre 2001)
We could take a hierarchy of tractable sets such that

where each set has a tractable SDP representation and intuitively

For each fixed level we can solve the following in polynomial time

This strategy has been very successful for several problems in 
machine learning, and theoretical computer science.



Sum-of-squares lower bound
Theorem (lower-bound SoS)

Assume that                      and let              . Then, with high probability 
there exists a solution

that is statistically independent from the true labels     .

based on an obstruction by Ghosh et al. (2020)

Intuition
When                        , any relaxation of small degree     has a solution 
that performs as a random guess.



Summary

Conjecture: statistical-computational gap

Computationally tractable procedure
Spectral method + alternating projections yield optimal error 
provided quadratic sample size.

Statistically optimal procedure
The Max-Cut formulation

gives Bayes-optimal error with (near) linear sample size.



Thank you


