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The Standard Quadratic Problem

Definition
The (deterministic) Standard Quadratic Problem (DStQP) is to
optimize a quadratic form over the Standard Simplex (Probability Simplex)

(DStQP) ZJet = Min {q(z) =2'Qz:z€ A”}

where A" = {z € R} 8lz = 1} and & is the vector of all ones.

The DStqP arises in many different contexts such as
o the Maximum-Clique- and the Maximum-Weight-Clique-Problem,
@ Evolutionary Game Theory,
@ Portfolio Selection and

@ Dominant-Set Clustering
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The Standard Quadratic Problem

Definition
The (deterministic) Standard Quadratic Problem (DStQP) is to
optimize a quadratic form over the Standard Simplex (Probability Simplex)

(DStQP) ZJet = Min {q(z) =2'Qz:z€ A”}

where A" = {z € R} 8lz = 1} and & is the vector of all ones.

@ DStqP defines a class of NP-Hard optimization problems.
@ Many polynomial time approximation schemes.

o Well performing local algorithms (e.g. based on
immunization-infection dynamics).

@ Many nice analytic bounds.
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Introducing Uncertainty
Uncertain blocks in the objective matrix

@ Henceforth, we assume that the quadratic for has uncertain entries:

BT
C .

@ Only the matrix A € R™*™ is known exactly.

o The matrices B € R™*™ C e R™*™ are only known to follow a
certain, known probability distribution [B, ] =: & ~ P.

Two-Stage Decision Process
@ We split the decision vector in two parts z = (x, y(&)).

Q:=

W >

@ x is the here and now decision, to be made immediately

@ y(&) is the second stage decision, that may adapt to the uncertain
outcome.
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Problem Formulation

Decomposing z := (x,y(&)),we arrive at
q(x,y(€)) = x"Ax+ 2xBTy(€) +y(€) "Cy(¢)
The two stage Stochastic version of the StQP is then given by

xeTM

min {XTAX + E£

min {2BTy(€) + y(&) Cy(€): eTx +eTy(€) = 1}} } (1)

= We want to find a first stage decision, that optimizes the expected
performance of our second stage decision.
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The Scenario Problem

The Scenario Problem

@ We can approximate the true probability distribution with an discretization.

@ We get a discrete probability measure py, ..., ps,
@ associated realizations of the random data By,...,Bs and Cq,...,Cs
The problem then reduces to the so called scenario problem:

S
min_ xTAx+ ) ps (2y] Bex + yI Cays)

XY1se00YS —
st.ie'x+elys=1, s=1,...,85,

x >0,
ys >0, s=1...,5,

Non-convex QP with linear constraints!
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Wait-and-See Approach

Wait-and-See Approach

Suppose the following:

@ & has a finite support = = {&1,...,&s},
e Finite number of possible scenarios & = (Bs, Cs).
@ Positive probabilities ps, s=1,...,S.

Deterministic optimization problem under scenario s:
z; :=min {qs(z) =7'Qsz:z € A"} ,

Wait and See Solution (WS)

S
1* . * *
4 T Z PsZg < Zstoch
s=1

v
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A Chain of Lower Bounds

Refinement of the Probability Measure

Consider the following successively refining partition of the sample
space:

=={&,....6s)
=,29,...,=0)
(ERN= L=}

({El}? {62}3 S {55})7

@ Each row is a collection of subsets of the probability space =.

)

@ The whole space = = U,-Egj
° Eg’j)

for all j.

is the union of sets from the next more refined collection
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A Hierarchy of Lower Bounds

A Chain of Lower Bounds

Denoting with

’§j) — ZE c=v Ps, We get to a chain of lower bounds expressed as

where
follows

<< <A< < (2)

@ The higher the index j, the fewer problems have to be solved,

@ but with an increasing number of scenarios.
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Convex Reformulations of QCQPs in a Nutshell

. 2 2 .
min g11x57 + 2g12Xx1 X X min g11X11 + 2q12X21+g22X22
mn g11X1 + 2q12X1X2+q22X5 XGsiq q q

s.t.: 2X12 +X22 <12, s.t. 1 2Xq1 + Xop <12,
x2 4+ 2x3 < 12, X11 + 2Xgp < 12,
4} + x5 > 4, 4X11 + Xop > 4,
X; +4x5 > 4, X11 +4X > 4,
\\\
F G(F)
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Convex Reformulations of QCQPs in a Nutshell

F G(F)

e We can lift the space of variables by replacing xx" — X

@ Then all quadratic expression become
xTAx = tr(AxxT) — tr(AX) = A e X, hence linear.

@ Since not all psd-matrices are of the form xx" the lifted problem is a
relaxation.

o If the extreme points of the lifted feasible set matrices of the form
xxT, we get a feasible solution for the original problem.

@ Thus, in these cases the relaxation is tight!
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Lower Bounds Based on Copositive Optimization

Exact CPP-Reformulation

Burer (2009) proofs the tightness of the CPP-relaxation

S
min AeX+Y p;(2BseZ +7 CooY,)

X,Y15005Ys =

st.ie'x+elys=1, s=1,...,85,
EeX+EeY,+2E0Z, =1, s=1,...,85,

LT T T (CPP1)
X zi ... Zi

vi Z1 Y1 ... YIS c CPP <R$+5"2+1) = {BBT: B> 0}

ys Zs Yis ... Ys

?S. Burer. On the copositive representation of binary and continuous nonconvex
quadratic programs. Mathematical Programming, 120(2) 2009

v
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Lower Bounds Based on Copositive Optimization

DNN Relaxation

We can further relax the problem in order to obtain a tractable lower
bound

AeX 5(25 Z.+7 C, Y)
7yTIny5 +Zp ¢ + *

ce'x+e yszl, s=1,...,5,
EeX+EeY,+2EeZ, =1, s=1,...,5,

1 x' le y}
x Xz ... ZI
yi Zi Y1 ... Y{s| e DNNmHSHL — gmtSmtl g prmctSntl
ys Zs Yis ... Ys

(DNN1)
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Lower Bounds Based on Copositive Optimization

Cheaper CPP-Relaxation

A cheaper lower bound is given by the problem
S
min AeX+ ; ps (2Bs @ Z; 4 Co @ Yy)
s.t.:eTereTys:l, s=1,...,S,
FeX+EeY, 2EeZ =1, s=1,...,5, (CPP2)
1 x" yl
x X zZI'| ecpp(Rpt™) s=1,...,5,
y Zs Ys
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Lower Bounds Based on Copositive Optimization

Cheaper DNN Relaxation

We can relax the problem in the same way as before:

S
min AeX+ Y ps (285 °Z. +TC. .Ys>

XoY1yeeY'S —
st.ielx+ely, =1, s=1,...,S,
EeX+EeY,+2E0eZ, =1, s=1,...,S,
I
x X ZT| esptmtlymtmtl =1 .S,
y Zs Ys
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The Franke-Wolfe Algorithm in a Nutshell

Algorithm 0: A fast way to solve min.cp (%), for a polytope P.
Result: v*
set k=1
set x;1 € P
repeat
solve miny, cp V£ (xk) "y
move to best vertex i.e. : Xky1 = Xk + afy+ — X«)
until Some criterium is met
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The Pairwise Franke-Wolfe Algorithm in a Nutshell

Algorithm 1: An even faster way to solve min,cp f(x), for a polytope P.

Result: v*
set k=1
set x; € P
choose Sk C P
repeat
solve miny, ep V£ (xk) y+ and max,_es, VFf(xk)Ty—; move towards best and
away from worst vertex i.e. : Xk41 = Xk + a(y+ —y—)
Update Si
until Some criterium is met
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Adapting AS-FW for the scenario problem

The gradient is easily calculated from the problem data since
Vx'Qx = 2Qx.

The vertices of the feasible set of

{(x,yl,...,ys) € R$+S"Z: elx+elys =1, s= 1,...,5} are simply

V(P) = {ei i€ [Liml} U {8, eiimi(om 1) € [Lim]*

@ Thus, solving the linear optimization problem amounts to finding
S + 1 largest/smallest values.

Sk is easily updated by dropping coordinates that became zero.

We can choose different starting points and pick the best solution.
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Comparing the copositive bounds

@ Test with different sizes of instances.
@ 20 randomly generated instances per size category.
o Average %-gap between the upper bound and the two lower bounds.
Time Gap max Gap Vs.
(n1,m,S)
DNN1 DNN2 | DNN1  DNN2 DNN1 DNN2 avgG maxG
(5,5.10) 1.647 0191 | 1.075% 1.373% | 13.26% 14.167% | 0.019% 0.016%
(5,10,10) 28.05 0.237 | 0.003% 0.039% | 0.056%  0.379% | 0.001% 0.001%
(5,20,10) 1132.45 0.754 | 0.428% 1.281% | 5.136% 18.633% | 0.001% 0.001%
(10,5,10) || 2942 0438 | 1.365% 1.665% | 17.201% 18.306% | 0.014% 0.011%
(20,5,10) || 5515  0.977 | 9.432% 9.305% | 35.772% 35.824% | 0.002% 0.001%
(5,5,20) 37.588 0.546 | 0.807% 1.394% | 13.756% 14.317% | 0.029% 0.023%
(5,5,40) 1504.456 0.998 | 1.09% 1.579% | 21.536% 21.625% | 0.006% 0.004%
v
Markus Gabl (IOR-KIT) SSTQP May 21, 2022 24 /33



Comparing different Upperbounds

Time Gap
(n,n2, S) H DNN  Gurobi fmincon PFW PFWM DNN Gurobi fmincon PFW PFWM
(10,5,10) 0,274 291,987 0,701 0,031 5,419 16,33%  0,32% 3,01% 1,92% 0,25%
(20,5,10) 0,492 300,406 0,994 0,061 7,170 | 50,41% 2,13%  10,57% 2,10% 0,23%
(5,10,10) 0,362 300,483 2,622 0,039 8,463 | 1524% 0,09% 2,31% 1,32% 0,08%
(5,20,10) 0,614 300,743 2,872 0,082 16,843 | 13,76%  0,15% 2,86%  1,88% 0,04%
(5,5,10) 0,362 296,317 0,764 0,024 4,207 | 19,06% 0,32% 094%  1,26% 0,32%
(5,5,20) 0,108 300,527 1,698 0,050 13,319 | 19,58% 0,15% 1,29% 2,54% 0,15%

Table: Results of cold-starting the upper-bound procedures

o Multistarting PFW yields small gaps in reasonable time.
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Warmstarting primal procedures

Gap Time
(n1,n,S) H DNN+FW+Gurobi DNN+fmincon DNN+Gurobi DNN-+FW | DNN+FW+Gurobi DNN+fmincon DNN+Gurobi DNN-+FW
(10,5,10) 0,26% 0,63% 0,31% 0,27% 292,431 1,139 291,379 0,534
(20,5,10) 0,54% 1,43% 1,87% 0,82% 301,150 1,797 301,163 0,796
(5.10,10) 0,08% 0,72% 0,09% 0,10% 301,038 1,819 301,048 0,591
(5,20,10) 0,04% 0,47% 0,17% 0,04% 301,598 6,654 301,595 0,908
(5.5,10) 0,32% 0,33% 0,32% 0,34% 301,769 1,125 301,419 0,548
(5.5,20) 0,15% 0,25% 0,15% 0,21% 301,089 1,982 301,006 0,505

Table: Warmstarting the upper bound procedures: gaps and runtimes

@ Using the upper bounds to warm start primal algorithms can be
advantageous.
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Experiments on dissecting the probability measure

Recall the successively refining partition of the sample space:

Markus Gabl (IOR-KIT)

percentage deviation

ed
=
]

&

0.5

=={&,...,&}
=D, =9, .. =Dy
E=P,=0,...,=2)
({51}7{52}7"'7{‘55})7
é % = = = —
=
2 3 4 ; 6 : 4
SSTQP

May 21, 2022

27/33



Application to Mean-Varaince Portfolio Optimization

@ We consider the historical mean return and variance of returns of ten
assets based on ten time series.

@ For assets i € [1:5] a longer time series of 48 days is available while
for assets i € [6:10] only a short time series of 12 days is available.

@ Hence, we consider the portion of the covariance matrix that involve
the latter assets to be uncertain and we consider the model:

: T T T T T
Xrngrg{uxerx Tox+E yrgllgxuyy+2x Yy ty ZyyY:|} (3)
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Despite the presence of a linear term, the above optimization problem can

be rewritten as

min {x Y ox+E [mln 2xTZny + yTZyyy} }

xeT?® y€Px

where

™M
X
Il
M
%
+

(nxe™ +eny)
(nxe +euy)
(nye" +epy) .

Pﬂl P4|

|| ||

M M

S <

+ +
NI NI N

@ We approximated the problem via the scenario approach

@ the covariance matrix were generated from a elementwise normal

distribution, i.e. (X);; ~ N((f),-j,a) with 3 the empirical covariance

matrix and o =1

@ Scenarios with S € {100, 500, 1000, 5000, 10000} were generated.
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Numerical experiments on portfolio optimization

S Obj Gap Time
100 || 163.59 0,00% 0.47
500 || 163.60 0,00% 1.07
1000 || 163.60 0,00% 2.27
5000 || 163.57 0,00% 10.84
10000 || 163.58 0,00% 22.49

Table: Results of the portfolio optimization experiment

@ In our experiments, all instances were solved using merely the reduced
conic relaxation

@ Hence, there are real-world applications where gaps can be closed
confidently using the basic strategies.
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Thank you
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