
Two-stage Stochastic Standard Quadratic Optimization

Markus Gabl1 Immanuel Bomze2 Francesca Maggioni 3

Georg Pflug 2

1Karlsruhe Institute of Technology, Karlsruhe,

2University of Vienna, Vienna, Austria

3Università degli Studi di Bergamo, Italy

May 21, 2022

Markus Gabl (IOR-KIT) SSTQP May 21, 2022 1 / 33



Overview

1 Standard Quadratic Problem

Basics

2 Stochastic Standard Quadratic Problem

Problem Formulation

3 Lower Bounds Based on Dissecting Probability Measures

Wait and See Approach

A Chain of Lower Bounds

4 Solving the Scenario Problems

Lower Bounds Based on Copositive Optimization

Upper Bounds based on Awaystep Franke-Wolfe Algorithm

5 Numerical Experiments

Markus Gabl (IOR-KIT) SSTQP May 21, 2022 2 / 33



Contents

1 Standard Quadratic Problem

Basics

2 Stochastic Standard Quadratic Problem

Problem Formulation

3 Lower Bounds Based on Dissecting Probability Measures

Wait and See Approach

A Chain of Lower Bounds

4 Solving the Scenario Problems

Lower Bounds Based on Copositive Optimization

Upper Bounds based on Awaystep Franke-Wolfe Algorithm

5 Numerical Experiments

Markus Gabl (IOR-KIT) SSTQP May 21, 2022 3 / 33



The Standard Quadratic Problem

Definition

The (deterministic) Standard Quadratic Problem (DStQP) is to

optimize a quadratic form over the Standard Simplex (Probability Simplex)

(DStQP) z∗det := min
{
q(z) := zTQz : z ∈ ∆n

}
where ∆n =

{
z ∈ Rn

+ : ēTz = 1
}

and ē is the vector of all ones.

The DStqP arises in many different contexts such as

the Maximum-Clique- and the Maximum-Weight-Clique-Problem,

Evolutionary Game Theory,

Portfolio Selection and

Dominant-Set Clustering
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The (deterministic) Standard Quadratic Problem (DStQP) is to

optimize a quadratic form over the Standard Simplex (Probability Simplex)

(DStQP) z∗det := min
{
q(z) := zTQz : z ∈ ∆n

}
where ∆n =

{
z ∈ Rn

+ : ēTz = 1
}

and ē is the vector of all ones.

DStqP defines a class of NP-Hard optimization problems.

Many polynomial time approximation schemes.

Well performing local algorithms (e.g. based on

immunization-infection dynamics).

Many nice analytic bounds.
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Introducing Uncertainty

Uncertain blocks in the objective matrix

Henceforth, we assume that the quadratic for has uncertain entries:

Q̃ :=

[
A B̃T

B̃ C̃

]
.

Only the matrix A ∈ Rn1×n1 is known exactly.

The matrices B̃ ∈ Rn2×n1 , C̃ ∈ Rn2×n2 are only known to follow a

certain, known probability distribution [B̃, C̃] =: ξ ∼ P.

Two-Stage Decision Process

We split the decision vector in two parts z = (x, y(ξ)).

x is the here and now decision, to be made immediately

y(ξ) is the second stage decision, that may adapt to the uncertain

outcome.
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Problem Formulation

Definitions

Decomposing z := (x, y(ξ)),we arrive at

q (x, y(ξ)) = xTAx + 2xTB̃Ty(ξ) + y(ξ)TC̃y(ξ)

The two stage Stochastic version of the StQP is then given by

min
x∈Tn1

{
xTAx + Eξ

[
min

y(ξ)≥0

{
2xTB̃Ty(ξ) + y(ξ)TC̃y(ξ) : eTx + eTy(ξ) = 1

}]}
(1)

⇒ We want to find a first stage decision, that optimizes the expected
performance of our second stage decision.
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The Scenario Problem

The Scenario Problem

We can approximate the true probability distribution with an discretization.

We get a discrete probability measure p1, . . . , pS ,

associated realizations of the random data B1, . . . ,BS and C1, . . . ,CS

The problem then reduces to the so called scenario problem:

min
x,y1,...,yS

xTAx +
S∑

i=1

ps
(
2yT

s Bsx + yT
s Csys

)
s.t. : eTx + eTys = 1, s = 1, . . . ,S ,

x ≥ 0,

ys ≥ 0, s = 1, . . . ,S ,

Non-convex QP with linear constraints!
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Wait-and-See Approach

Wait-and-See Approach

Suppose the following:

ξ has a finite support Ξ = {ξ1, . . . , ξS},
Finite number of possible scenarios ξs = (Bs ,Cs).

Positive probabilities ps , s = 1, . . . ,S .

Deterministic optimization problem under scenario s:

z∗s := min
{
qs(z) := zTQsz : z ∈ ∆n

}
,

Wait and See Solution (WS)

z1∗ :=
S∑

s=1

psz
∗
s ≤ z∗stoch
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A Chain of Lower Bounds

Refinement of the Probability Measure

Consider the following successively refining partition of the sample
space:

Ξ = {ξ1, . . . , ξS}
. . .

(Ξ
(j)
1 ,Ξ

(j)
2 , . . . ,Ξ(j)

mj
)

. . .

(Ξ
(2)
1 ,Ξ

(2)
2 , . . . ,Ξ(2)

m2
)

({ξ1}, {ξ2}, . . . , {ξS}),

Each row is a collection of subsets of the probability space Ξ.

The whole space Ξ = ∪iΞ
(j)
i for all j .

Ξ
(j)
i is the union of sets from the next more refined collection
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A Hierarchy of Lower Bounds

A Chain of Lower Bounds

Denoting with

z j
∗

=

mj∑
i=1

π
(j)
i z∗(Ξ

(j)

i ),

where π
(j)
i =

∑
ξs∈Ξ(j)

i
ps , we get to a chain of lower bounds expressed as

follows

z1∗ ≤ z2∗ ≤ · · · ≤ z j
∗ ≤ · · · ≤ z∗stoch. (2)

The higher the index j , the fewer problems have to be solved,

but with an increasing number of scenarios.
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Convex Reformulations of QCQPs in a Nutshell

min
x∈R2

q11x
2
1 + 2q12x1x2+q22x

2
2

s.t. : 2x2
1 + x2

2 ≤ 12,

x2
1 + 2x2

2 ≤ 12,

4x2
1 + x2

2 ≥ 4,

x2
1 + 4x2

2 ≥ 4,

min
X∈S2

+

q11X11 + 2q12X21+q22X22

s.t. : 2X11 + X22 ≤ 12,

X11 + 2X22 ≤ 12,

4X11 + X22 ≥ 4,

X11 + 4X22 ≥ 4,

F G(F)
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Convex Reformulations of QCQPs in a Nutshell

F G(F)

We can lift the space of variables by replacing xxT → X

Then all quadratic expression become

xTAx = tr(AxxT)→ tr(AX) = A • X, hence linear.

Since not all psd-matrices are of the form xxT the lifted problem is a

relaxation.

If the extreme points of the lifted feasible set matrices of the form

xxT, we get a feasible solution for the original problem.

Thus, in these cases the relaxation is tight!
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Lower Bounds Based on Copositive Optimization

Exact CPP-Reformulation

Burer (2009) proofs the tightness of the CPP-relaxation

min
x,y1,...,yS

A • X +
S∑

i=1

ps
(
2Bs • Zs +T Cs • Ys

)
s.t. : eTx + eTys = 1, s = 1, . . . ,S ,

E • X + E • Ys + 2E • Zs = 1, s = 1, . . . ,S ,
1 xT yT

1 . . . yT
S

x X ZT
1 . . . ZT

S

y1 Z1 Y1 . . . YT
1,S

...
...

...
. . .

...
yS ZS Y1,S . . . YS

 ∈ CPP
(
Rn1+Sn2+1

+

)
:=
{

BBT : B ≥ 0
}

(CPP1)

aS. Burer. On the copositive representation of binary and continuous nonconvex
quadratic programs. Mathematical Programming, 120(2) 2009
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Lower Bounds Based on Copositive Optimization

DNN Relaxation

We can further relax the problem in order to obtain a tractable lower

bound

min
x,y1,...,yS

A • X +
S∑

i=1

ps
(

2Bs • Zs +T Cs • Ys

)
s.t. : eTx + eTys = 1, s = 1, . . . ,S ,

E • X + E • Ys + 2E • Zs = 1, s = 1, . . . ,S ,
1 xT yT

1 . . . yT
S

x X ZT
1 . . . ZT

S

y1 Z1 Y1 . . . YT
1,S

...
...

...
. . .

...

yS ZS Y1,S . . . YS

 ∈ DNN
n1+Sn2+1 := Sn1+Sn2+1

+ ∩N n1+Sn2+1

(DNN1)
Markus Gabl (IOR-KIT) SSTQP May 21, 2022 18 / 33



Lower Bounds Based on Copositive Optimization

Cheaper CPP-Relaxation

A cheaper lower bound is given by the problem

min
x,y1,...,yS

A • X +
S∑

i=1

ps (2Bs • Zs + Cs • Ys)

s.t. : eTx + eTys = 1, s = 1, . . . ,S ,

E • X + E • Ys + 2E • Zs = 1, s = 1, . . . ,S ,1 xT yT
s

x X ZT
s

y Zs Ys

 ∈ CPP (Rn1+n2+1
+

)
s = 1, . . . ,S ,

(CPP2)
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Lower Bounds Based on Copositive Optimization

Cheaper DNN Relaxation

We can relax the problem in the same way as before:

min
x,y1,...,yS

A • X +
S∑

i=1

ps
(

2Bs • Zs +T Cs • Ys

)
s.t. : eTx + eTys = 1, s = 1, . . . ,S ,

E • X + E • Ys + 2E • Zs = 1, s = 1, . . . ,S ,1 xT yT
s

x X ZT
s

y Zs Ys

 ∈ Sn1+n2+1
+ ∩N n1+n2+1 s = 1, . . . ,S ,

(DNN2)
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The Franke-Wolfe Algorithm in a Nutshell

Algorithm 0: A fast way to solve minx∈P f (x), for a polytope P.

Result: v∗

set k = 1
set x1 ∈ P
repeat

solve miny+∈P ∇f (xk)Ty+

move to best vertex i.e. : xk+1 = xk + α(y+ − xk)

until Some criterium is met
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The Pairwise Franke-Wolfe Algorithm in a Nutshell

Algorithm 1: An even faster way to solve minx∈P f (x), for a polytope P.

Result: v∗

set k = 1
set x1 ∈ P
choose Sk ⊆ P
repeat

solve miny+∈P ∇f (xk)Ty+ and maxy−∈Sk ∇f (xk)Ty−; move towards best and
away from worst vertex i.e. : xk+1 = xk + α(y+ − y−)

Update Sk

until Some criterium is met

F G(F)Markus Gabl (IOR-KIT) SSTQP May 21, 2022 21 / 33



Adapting AS-FW for the scenario problem

The gradient is easily calculated from the problem data since

∇xTQx = 2Qx.

The vertices of the feasible set of{
(x, y1, . . . , ys) ∈ Rn1+Sn2

+ : eTx + eTys = 1, s = 1, . . . ,S
}

are simply

V (P) = {ei : i ∈ [1 :n1]} ∪
{∑S

s=1 ejs+n1+(s−1)n2
: j ∈ [1 :n2]S

}
Thus, solving the linear optimization problem amounts to finding

S + 1 largest/smallest values.

Sk is easily updated by dropping coordinates that became zero.

We can choose different starting points and pick the best solution.
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Comparing the copositive bounds

Results

Test with different sizes of instances.

20 randomly generated instances per size category.

Average %-gap between the upper bound and the two lower bounds.

(n1, n2,S)
Time Gap max Gap Vs.

DNN1 DNN2 DNN1 DNN2 DNN1 DNN2 avgG maxG

(5,5,10) 1.647 0.191 1.075% 1.373% 13.26% 14.167% 0.019% 0.016%

(5,10,10) 28.05 0.237 0.003% 0.039% 0.056% 0.379% 0.001% 0.001%

(5,20,10) 1132.45 0.754 0.428% 1.281% 5.136% 18.633% 0.001% 0.001%

(10,5,10) 2.942 0.438 1.365% 1.665% 17.201% 18.306% 0.014% 0.011%

(20,5,10) 5.515 0.977 9.432% 9.305% 35.772% 35.824% 0.002% 0.001%

(5,5,20) 37.588 0.546 0.807% 1.394% 13.756% 14.317% 0.029% 0.023%

(5,5,40) 1504.456 0.998 1.09% 1.579% 21.536% 21.625% 0.006% 0.004%
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Comparing different Upperbounds

Time Gap
(n1, n2, S) DNN Gurobi fmincon PFW PFWM DNN Gurobi fmincon PFW PFWM

(10,5,10) 0,274 291,987 0,701 0,031 5,419 16,33% 0,32% 3,01% 1,92% 0,25%
(20,5,10) 0,492 300,406 0,994 0,061 7,170 50,41% 2,13% 10,57% 2,10% 0,23%
(5,10,10) 0,362 300,483 2,622 0,039 8,463 15,24% 0,09% 2,31% 1,32% 0,08%
(5,20,10) 0,614 300,743 2,872 0,082 16,843 13,76% 0,15% 2,86% 1,88% 0,04%
(5,5,10) 0,362 296,317 0,764 0,024 4,207 19,06% 0,32% 0,94% 1,26% 0,32%
(5,5,20) 0,108 300,527 1,698 0,050 13,319 19,58% 0,15% 1,29% 2,54% 0,15%

Table: Results of cold-starting the upper-bound procedures

Multistarting PFW yields small gaps in reasonable time.

Markus Gabl (IOR-KIT) SSTQP May 21, 2022 25 / 33



Warmstarting primal procedures

Gap Time

(n1, n2,S) DNN+FW+Gurobi DNN+fmincon DNN+Gurobi DNN+FW DNN+FW+Gurobi DNN+fmincon DNN+Gurobi DNN+FW

(10,5,10) 0,26% 0,63% 0,31% 0,27% 292,431 1,139 291,379 0,534

(20,5,10) 0,54% 1,43% 1,87% 0,82% 301,150 1,797 301,163 0,796

(5,10,10) 0,08% 0,72% 0,09% 0,10% 301,038 1,819 301,048 0,591

(5,20,10) 0,04% 0,47% 0,17% 0,04% 301,598 6,654 301,595 0,908

(5,5,10) 0,32% 0,33% 0,32% 0,34% 301,769 1,125 301,419 0,548

(5,5,20) 0,15% 0,25% 0,15% 0,21% 301,089 1,982 301,006 0,505

Table: Warmstarting the upper bound procedures: gaps and runtimes

Using the upper bounds to warm start primal algorithms can be

advantageous.
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Experiments on dissecting the probability measure

Recall the successively refining partition of the sample space:

Ξ = {ξ1, . . . , ξS}
. . .

(Ξ
(j)
1 ,Ξ

(j)
2 , . . . ,Ξ

(j)
mj

)

. . .

(Ξ
(2)
1 ,Ξ

(2)
2 , . . . ,Ξ(2)

m2
)

({ξ1}, {ξ2}, . . . , {ξS}),

Figure: Percentage deviation from the optimal objective value z∗stoch for level j of
a refinement chain composed by 9 layers.
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Application to Mean-Varaince Portfolio Optimization

We consider the historical mean return and variance of returns of ten

assets based on ten time series.

For assets i ∈ [1 :5] a longer time series of 48 days is available while

for assets i ∈ [6 :10] only a short time series of 12 days is available.

Hence, we consider the portion of the covariance matrix that involve

the latter assets to be uncertain and we consider the model:

min
x∈T 5

{
µT
x x + xTΣxxx + E

[
min
y∈Px

µT
y y + 2xTΣxyy + yTΣyyy

]}
(3)
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Despite the presence of a linear term, the above optimization problem can

be rewritten as

min
x∈T 5

{
xTΣ̄xxx + E

[
min
y∈Px

2xTΣ̄xyy + yTΣ̄yyy

]}
where

Σ̄xx := Σxx + 1
2

(
µxeT + eµT

x

)
,

Σ̄xy := Σxy + 1
2

(
µxeT + eµT

y

)
,

Σ̄yy := Σyy + 1
2

(
µyeT + eµT

y

)
.

We approximated the problem via the scenario approach

the covariance matrix were generated from a elementwise normal

distribution, i.e. (Σ)ij ∼ N((Σ̂)ij , σ) with Σ̂ the empirical covariance

matrix and σ = 1

Scenarios with S ∈ {100, 500, 1000, 5000, 10000} were generated.
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Numerical experiments on portfolio optimization

S Obj Gap Time

100 163.59 0,00% 0.47

500 163.60 0,00% 1.07

1000 163.60 0,00% 2.27

5000 163.57 0,00% 10.84

10000 163.58 0,00% 22.49

Table: Results of the portfolio optimization experiment

In our experiments, all instances were solved using merely the reduced

conic relaxation

Hence, there are real-world applications where gaps can be closed

confidently using the basic strategies.
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Thank you
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