Two-stage Stochastic Standard Quadratic Optimization

<u>Markus Gabl</u>¹ Immanuel Bomze² Francesca Maggioni ³ Georg Pflug ²

¹Karlsruhe Institute of Technology, Karlsruhe,

²University of Vienna, Vienna, Austria

³Università degli Studi di Bergamo, Italy

May 21, 2022

Der Wissenschaftsfonds.

Markus Gabl (IOR-KIT)

Vienna Graduate School on Computational Optimization

May 21, 2022 1 / 33

Overview

Standard Quadratic Problem Basics

- 2 Stochastic Standard Quadratic Problem
 - Problem Formulation
- Icower Bounds Based on Dissecting Probability Measures
 - Wait and See Approach
 - A Chain of Lower Bounds

4 Solving the Scenario Problems

- Lower Bounds Based on Copositive Optimization
- Upper Bounds based on Awaystep Franke-Wolfe Algorithm

Standard Quadratic Problem Basics

- Stochastic Standard Quadratic Problem
 - Problem Formulation

Icower Bounds Based on Dissecting Probability Measures

- Wait and See Approach
- A Chain of Lower Bounds

4 Solving the Scenario Problems

- Lower Bounds Based on Copositive Optimization
- Upper Bounds based on Awaystep Franke-Wolfe Algorithm

Definition

The (deterministic) **Standard Quadratic Problem** (DStQP) is to optimize a quadratic form over the Standard Simplex (Probability Simplex)

$$ext{DStQP}$$
) $z^*_{ ext{det}} := \min\left\{q(z) := z^\mathsf{T} \mathsf{Q} z : z \in \Delta^n\right\}$

where $\Delta^n = \left\{ z \in \mathbb{R}^n_+ : \overline{e}^\mathsf{T} z = 1 \right\}$ and \overline{e} is the vector of all ones.

The DStqP arises in many different contexts such as

- the Maximum-Clique- and the Maximum-Weight-Clique-Problem,
- Evolutionary Game Theory,
- Portfolio Selection and
- Dominant-Set Clustering

Definition

The (deterministic) **Standard Quadratic Problem** (DStQP) is to optimize a quadratic form over the Standard Simplex (Probability Simplex)

$$ext{DStQP}$$
) $z_{ ext{det}}^* := \min\left\{q(z) := z^{\mathsf{T}}\mathsf{Q}z : z \in \Delta^n\right\}$

where $\Delta^n = \left\{ z \in \mathbb{R}^n_+ : \overline{e}^\mathsf{T} z = 1 \right\}$ and \overline{e} is the vector of all ones.

- DStqP defines a class of NP-Hard optimization problems.
- Many polynomial time approximation schemes.
- Well performing local algorithms (e.g. based on immunization-infection dynamics).
- Many nice analytic bounds.

- 2 Stochastic Standard Quadratic Problem
 - Problem Formulation
- 3 Lower Bounds Based on Dissecting Probability Measures
 - Wait and See Approach
 - A Chain of Lower Bounds

4 Solving the Scenario Problems

- Lower Bounds Based on Copositive Optimization
- Upper Bounds based on Awaystep Franke-Wolfe Algorithm

Introducing Uncertainty

Uncertain blocks in the objective matrix

• Henceforth, we assume that the quadratic for has uncertain entries:

$$\tilde{\mathsf{Q}} := \left[\begin{array}{cc} \mathsf{A} & \tilde{\mathsf{B}}^\mathsf{T} \\ \tilde{\mathsf{B}} & \tilde{\mathsf{C}} \end{array} \right]$$

- Only the matrix $\mathsf{A} \in \mathbb{R}^{n_1 \times n_1}$ is known exactly.
- The matrices $\tilde{B} \in \mathbb{R}^{n_2 \times n_1}$, $\tilde{C} \in \mathbb{R}^{n_2 \times n_2}$ are only known to follow a certain, known probability distribution $[\tilde{B}, \tilde{C}] =: \boldsymbol{\xi} \sim \mathcal{P}$.

Two-Stage Decision Process

- We split the decision vector in two parts $z = (x, y(\xi))$.
- x is the here and now decision, to be made immediately
- y(ξ) is the second stage decision, that may adapt to the uncertain outcome.

Markus Gabl (IOR-KIT)

Definitions

Decomposing $z := (x, y(\xi))$,we arrive at

$$q(\mathbf{x}, \mathbf{y}(\boldsymbol{\xi})) = \mathbf{x}^{\mathsf{T}} \mathsf{A} \mathbf{x} + 2\mathbf{x}^{\mathsf{T}} \tilde{\mathsf{B}}^{\mathsf{T}} \mathbf{y}(\boldsymbol{\xi}) + \mathbf{y}(\boldsymbol{\xi})^{\mathsf{T}} \tilde{\mathsf{C}} \mathbf{y}(\boldsymbol{\xi})$$

The two stage Stochastic version of the StQP is then given by

$$\min_{\mathbf{x}\in\mathcal{T}^{n_{1}}}\left\{\mathbf{x}^{\mathsf{T}}\mathsf{A}\mathbf{x}+\mathbb{E}_{\boldsymbol{\xi}}\left[\min_{\mathbf{y}(\boldsymbol{\xi})\geq0}\left\{2\mathbf{x}^{\mathsf{T}}\tilde{\mathsf{B}}^{\mathsf{T}}\mathbf{y}(\boldsymbol{\xi})+\mathbf{y}(\boldsymbol{\xi})^{\mathsf{T}}\tilde{\mathsf{C}}\mathbf{y}(\boldsymbol{\xi})\colon\mathsf{e}^{\mathsf{T}}\mathbf{x}+\mathsf{e}^{\mathsf{T}}\mathbf{y}(\boldsymbol{\xi})=1\right\}\right]\right\}$$
(1)

 $\Rightarrow\,$ We want to find a first stage decision, that optimizes the expected performance of our second stage decision.

The Scenario Problem

- We can approximate the true probability distribution with an discretization.
- We get a discrete probability measure p_1, \ldots, p_S ,
- \bullet associated realizations of the random data $\mathsf{B}_1,\ldots,\mathsf{B}_S$ and $\mathsf{C}_1,\ldots,\mathsf{C}_S$

The problem then reduces to the so called *scenario problem*:

$$\begin{split} \min_{\substack{\mathbf{x}, \mathbf{y}_1, \dots, \mathbf{y}_s}} \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} + \sum_{i=1}^{S} p_s \left(2 \mathbf{y}_s^\mathsf{T} \mathsf{B}_s \mathbf{x} + \mathbf{y}_s^\mathsf{T} \mathsf{C}_s \mathbf{y}_s \right) \\ \text{s.t.} : \mathbf{e}^\mathsf{T} \mathbf{x} + \mathbf{e}^\mathsf{T} \mathbf{y}_s = 1, \qquad s = 1, \dots, S, \\ \mathbf{x} \ge \mathbf{0}, \\ \mathbf{y}_s \ge \mathbf{0}, \qquad s = 1, \dots, S, \end{split}$$

Non-convex QP with linear constraints!

- Stochastic Standard Quadratic Problem
 Problem Formulation
- Lower Bounds Based on Dissecting Probability Measures
 Wait and See Approach
 A Chain of Lower Bounds

4 Solving the Scenario Problems

- Lower Bounds Based on Copositive Optimization
- Upper Bounds based on Awaystep Franke-Wolfe Algorithm

Wait-and-See Approach

Wait-and-See Approach

Suppose the following:

- $\boldsymbol{\xi}$ has a finite support $\boldsymbol{\Xi} = \{\xi_1, \dots, \xi_S\}$,
- Finite number of possible scenarios $\xi_s = (B_s, C_s)$.
- Positive probabilities p_s , $s = 1, \ldots, S$.

Deterministic optimization problem under scenario s:

$$z_s^* := \min \left\{ q_s(\mathbf{z}) := \mathbf{z}^\mathsf{T} \mathsf{Q}_s \mathbf{z} : \mathbf{z} \in \Delta^n \right\},$$

Wait and See Solution (WS)

$$z^{1^*} := \sum_{s=1}^{S} p_s z^*_s \leq z^*_{\text{stoch}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2 Stochastic Standard Quadratic Problem
 - Problem Formulation
- Lower Bounds Based on Dissecting Probability Measures
 Wait and See Approach
 - A Chain of Lower Bounds

4 Solving the Scenario Problems

- Lower Bounds Based on Copositive Optimization
- Upper Bounds based on Awaystep Franke-Wolfe Algorithm

Refinement of the Probability Measure

Consider the following **successively refining partition of the sample space**:

$$\Xi = \{\xi_1, \dots, \xi_S\}$$
...
$$(\Xi_1^{(j)}, \Xi_2^{(j)}, \dots, \Xi_{m_j}^{(j)})$$
...
$$(\Xi_1^{(2)}, \Xi_2^{(2)}, \dots, \Xi_{m_2}^{(2)})$$

$$\{\xi_1\}, \{\xi_2\}, \dots, \{\xi_S\}\},$$

• Each row is a collection of subsets of the probability space Ξ .

• The whole space $\Xi = \bigcup_i \Xi_i^{(j)}$ for all j.

• $\Xi_i^{(j)}$ is the union of sets from the next more refined collection

A Chain of Lower Bounds

Denoting with

$$z^{j^*} = \sum_{i=1}^{m_j} \pi_i^{(j)} z^*(\Xi_i^{(j)}),$$

where $\pi_i^{(j)} = \sum_{\xi_s \in \Xi_i^{(j)}} p_s$, we get to a chain of lower bounds expressed as follows

$$z^{1^*} \le z^{2^*} \le \dots \le z^{j^*} \le \dots \le z^*_{\text{stoch}}.$$
 (2)

The higher the index j, the fewer problems have to be solved,
but with an increasing number of scenarios.

- 2 Stochastic Standard Quadratic Problem
 - Problem Formulation

Icower Bounds Based on Dissecting Probability Measures

- Wait and See Approach
- A Chain of Lower Bounds

4 Solving the Scenario Problems

- Lower Bounds Based on Copositive Optimization
- Upper Bounds based on Awaystep Franke-Wolfe Algorithm

Convex Reformulations of QCQPs in a Nutshell

$$\min_{\mathbf{x}\in\mathbb{R}^{2}} q_{11}x_{1}^{2} + 2q_{12}x_{1}x_{2} + q_{22}x_{2}^{2} \text{s.t.} : 2x_{1}^{2} + x_{2}^{2} \le 12, x_{1}^{2} + 2x_{2}^{2} \le 12, 4x_{1}^{2} + x_{2}^{2} \ge 4, x_{1}^{2} + 4x_{2}^{2} \ge 4, \\ x_{1}^{2} + 4x_{2}^{2} \ge 4, \\ \mathcal{F}$$

$$\begin{array}{c} \min_{\mathbf{X}\in\mathcal{S}^{2}_{+}} q_{11}X_{11} + 2q_{12}X_{21} + q_{22}X_{22} \\ \text{s.t.} : 2X_{11} + X_{22} \le 12, \\ X_{11} + 2X_{22} \le 12, \\ X_{11} + 2X_{22} \ge 4, \\ X_{11} + 4X_{22} \ge 4, \\ X_{11} + 4X_{22} \ge 4, \\ X_{11} + 4X_{22} \ge 4, \\ \mathcal{F} \end{array}$$

SSTQP

Convex Reformulations of QCQPs in a Nutshell

- \bullet We can lift the space of variables by replacing $xx^T \to X$
- Then all quadratic expression become
 - $x^{\mathsf{T}}\mathsf{A}x = \operatorname{tr}(\mathsf{A}xx^{\mathsf{T}}) \to \operatorname{tr}(\mathsf{A}X) = \mathsf{A} \bullet \mathsf{X}$, hence linear.
- Since not all psd-matrices are of the form xx^T the lifted problem is a relaxation.
- If the extreme points of the lifted feasible set matrices of the form xx^T, we get a feasible solution for the original problem.

- 2 Stochastic Standard Quadratic Problem
 - Problem Formulation
- Source Bounds Based on Dissecting Probability Measures
 Wait and See Approach
 A Chain of Lower Bounds

4 Solving the Scenario Problems

- Lower Bounds Based on Copositive Optimization
- Upper Bounds based on Awaystep Franke-Wolfe Algorithm

Lower Bounds Based on Copositive Optimization

Exact CPP-Reformulation

Burer (2009) proofs the tightness of the CPP-relaxation

$$\min_{\substack{x, y_1, \dots, y_s}} A \bullet X + \sum_{i=1}^{S} p_s \left(2B_s \bullet Z_s +^{\mathsf{T}} C_s \bullet Y_s \right) \\ \text{s.t.} : e^{\mathsf{T}} x + e^{\mathsf{T}} y_s = 1, \quad s = 1, \dots, S, \\ E \bullet X + E \bullet Y_s + 2E \bullet Z_s = 1, \quad s = 1, \dots, S, \\ \begin{pmatrix} 1 & x^{\mathsf{T}} & y_1^{\mathsf{T}} & \dots & y_s^{\mathsf{T}} \\ x & X & Z_1^{\mathsf{T}} & \dots & Z_s^{\mathsf{T}} \\ y_1 & Z_1 & Y_1 & \dots & Y_{1,s}^{\mathsf{T}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y_s & Z_s & Y_{1,s} & \dots & Y_s \end{pmatrix} \in \mathcal{CPP} \left(\mathbb{R}^{n_1 + Sn_2 + 1}_+ \right) \coloneqq \{ \mathsf{BB}^{\mathsf{T}} \colon \mathsf{B} \ge 0 \}$$
(CPP1)

 a S. Burer. On the copositive representation of binary and continuous nonconvex quadratic programs. Mathematical Programming, 120(2) 2009

Markus Gabl (IOR-KIT)

Lower Bounds Based on Copositive Optimization

DNN Relaxation

We can further relax the problem in order to obtain a **tractable lower bound**

$$\begin{array}{l} \min_{\mathbf{x},\mathbf{y}_{1},\dots,\mathbf{y}_{S}} \mathbf{A} \bullet \mathbf{X} + \sum_{i=1}^{S} p_{s} \left(2\mathbf{B}_{s} \bullet \mathbf{Z}_{s} +^{\mathsf{T}} \mathbf{C}_{s} \bullet \mathbf{Y}_{s} \right) \\ \text{s.t.} : \mathbf{e}^{\mathsf{T}} \mathbf{x} + \mathbf{e}^{\mathsf{T}} \mathbf{y}_{s} = 1, \quad s = 1, \dots, S, \\ \mathbf{E} \bullet \mathbf{X} + \mathbf{E} \bullet \mathbf{Y}_{s} + 2\mathbf{E} \bullet \mathbf{Z}_{s} = 1, \quad s = 1, \dots, S, \\ \begin{pmatrix} 1 & \mathbf{x}^{\mathsf{T}} & \mathbf{y}_{1}^{\mathsf{T}} & \dots & \mathbf{y}_{S}^{\mathsf{T}} \\ \mathbf{x} & \mathbf{X} & \mathbf{Z}_{1}^{\mathsf{T}} & \dots & \mathbf{Y}_{S}^{\mathsf{T}} \\ \mathbf{y}_{1} & \mathbf{Z}_{1} & \mathbf{Y}_{1} & \dots & \mathbf{Y}_{1,S}^{\mathsf{T}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{y}_{s} & \mathbf{Z}_{s} & \mathbf{Y}_{1,S} & \dots & \mathbf{Y}_{S} \end{array} \right) \in \mathcal{DNN}^{n_{1}+Sn_{2}+1} \coloneqq \mathcal{S}_{+}^{n_{1}+Sn_{2}+1} \cap \mathcal{N}^{n_{1}+Sn_{2}+1} \\ \end{array} \tag{DNN1}$$

Cheaper CPP-Relaxation

A cheaper lower bound is given by the problem

$$\begin{split} \min_{\mathbf{x}, \mathbf{y}_1, \dots, \mathbf{y}_S} \mathbf{A} \bullet \mathbf{X} + \sum_{i=1}^{S} p_s \left(2\mathbf{B}_s \bullet \mathbf{Z}_s + \mathbf{C}_s \bullet \mathbf{Y}_s \right) \\ \text{s.t.} : \mathbf{e}^{\mathsf{T}} \mathbf{x} + \mathbf{e}^{\mathsf{T}} \mathbf{y}_s = 1, \qquad s = 1, \dots, S, \\ \mathbf{E} \bullet \mathbf{X} + \mathbf{E} \bullet \mathbf{Y}_s + 2\mathbf{E} \bullet \mathbf{Z}_s = 1, \qquad s = 1, \dots, S, \\ \begin{pmatrix} 1 & \mathbf{x}^{\mathsf{T}} & \mathbf{y}_s^{\mathsf{T}} \\ \mathbf{x} & \mathbf{X} & \mathbf{Z}_s^{\mathsf{T}} \\ \mathbf{y} & \mathbf{Z}_s & \mathbf{Y}_s \end{pmatrix} \in \mathcal{CPP} \left(\mathbb{R}_+^{n_1 + n_2 + 1} \right) \quad s = 1, \dots, S, \end{split}$$
(CPP2)

Cheaper DNN Relaxation

We can relax the problem in the same way as before:

$$\begin{split} \min_{\mathbf{x}, \mathbf{y}_1, \dots, \mathbf{y}_S} \mathbf{A} \bullet \mathbf{X} + \sum_{i=1}^{S} p_s \left(2\mathbf{B}_s \bullet \mathbf{Z}_s +^{\mathsf{T}} \mathbf{C}_s \bullet \mathbf{Y}_s \right) \\ \text{s.t.} : \mathbf{e}^{\mathsf{T}} \mathbf{x} + \mathbf{e}^{\mathsf{T}} \mathbf{y}_s = 1, \qquad s = 1, \dots, S, \\ \mathbf{E} \bullet \mathbf{X} + \mathbf{E} \bullet \mathbf{Y}_s + 2\mathbf{E} \bullet \mathbf{Z}_s = 1, \qquad s = 1, \dots, S, \\ \begin{pmatrix} 1 & \mathbf{x}^{\mathsf{T}} & \mathbf{y}_s^{\mathsf{T}} \\ \mathbf{x} & \mathbf{X} & \mathbf{Z}_s^{\mathsf{T}} \\ \mathbf{y} & \mathbf{Z}_s & \mathbf{Y}_s \end{pmatrix} \in \mathcal{S}_+^{n_1 + n_2 + 1} \cap \mathcal{N}^{n_1 + n_2 + 1} \quad s = 1, \dots, S, \end{split}$$
(DNN2)

- 2 Stochastic Standard Quadratic Problem
 - Problem Formulation

3 Lower Bounds Based on Dissecting Probability Measures

- Wait and See Approach
- A Chain of Lower Bounds

4 Solving the Scenario Problems

- Lower Bounds Based on Copositive Optimization
- Upper Bounds based on Awaystep Franke-Wolfe Algorithm

The Franke-Wolfe Algorithm in a Nutshell

Algorithm 0: A fast way to solve $\min_{x \in P} f(x)$, for a polytope *P*.

Result: v^* set k = 1set $x_1 \in P$ **repeat** $\begin{vmatrix} \text{ solve } \min_{y_+ \in P} \nabla f(x_k)^T y_+ \\ \text{ move to best vertex i.e. } : x_{k+1} = x_k + \alpha(y_+ - x_k) \end{vmatrix}$

until Some criterium is met

The Pairwise Franke-Wolfe Algorithm in a Nutshell

Algorithm 1: An even faster way to solve $\min_{x \in P} f(x)$, for a polytope *P*.

Result: v^* set k = 1set $x_1 \in P$ choose $S_k \subseteq P$ **repeat** solve $\min_{y_+ \in P} \nabla f(x_k)^T y_+$ and $\max_{y_- \in S_k} \nabla f(x_k)^T y_-$; move towards best and away from worst vertex i.e. : $x_{k+1} = x_k + \alpha(y_+ - y_-)$

Update S_k

until Some criterium is met

Adapting AS-FW for the scenario problem

- The gradient is easily calculated from the problem data since $\nabla x^T Q x = 2Qx$.
- The vertices of the feasible set of $\left\{ (\mathsf{x},\mathsf{y}_1,\ldots,\mathsf{y}_s) \in \mathbb{R}^{n_1+Sn_2}_+ : \mathsf{e}^\mathsf{T}\mathsf{x} + \mathsf{e}^\mathsf{T}\mathsf{y}_s = 1, \ s = 1,\ldots,S \right\} \text{ are simply}$ $V(P) = \left\{ \mathsf{e}_i : i \in [1:n_1] \right\} \cup \left\{ \sum_{s=1}^S \mathsf{e}_{j_s+n_1+(s-1)n_2} : j \in [1:n_2]^S \right\}$
- Thus, solving the linear optimization problem amounts to finding S + 1 largest/smallest values.
- S_k is easily updated by dropping coordinates that became zero.
- We can choose different starting points and pick the best solution.

- 2 Stochastic Standard Quadratic Problem
 - Problem Formulation

Icower Bounds Based on Dissecting Probability Measures

- Wait and See Approach
- A Chain of Lower Bounds

4 Solving the Scenario Problems

- Lower Bounds Based on Copositive Optimization
- Upper Bounds based on Awaystep Franke-Wolfe Algorithm

Comparing the copositive bounds

Results

- Test with different sizes of instances.
- 20 randomly generated instances per size category.
- Average %-gap between the upper bound and the two lower bounds.

(n_1, n_2, S)	Time		Gap		max Gap		Vs.	
	DNN1	DNN2	DNN1	DNN2	DNN1	DNN2	avgG	maxG
(5,5,10)	1.647	0.191	1.075%	1.373%	13.26%	14.167%	0.019%	0.016%
(5,10,10)	28.05	0.237	0.003%	0.039%	0.056%	0.379%	0.001%	0.001%
(5,20,10)	1132.45	0.754	0.428%	1.281%	5.136%	18.633%	0.001%	0.001%
(10,5,10)	2.942	0.438	1.365%	1.665%	17.201%	18.306%	0.014%	0.011%
(20,5,10)	5.515	0.977	9.432%	9.305%	35.772%	35.824%	0.002%	0.001%
(5,5,20)	37.588	0.546	0.807%	1.394%	13.756%	14.317%	0.029%	0.023%
(5,5,40)	1504.456	0.998	1.09%	1.579%	21.536%	21.625%	0.006%	0.004%

Markus Gabl (IOR-KIT)

			Time					Gap		
(n_1, n_2, S)	DNN	Gurobi	fmincon	PFW	PFWM	DNN	Gurobi	fmincon	PFW	PFWM
(10,5,10)	0,274	291,987	0,701	0,031	5,419	16,33%	0,32%	3,01%	1,92%	0,25%
(20,5,10)	0,492	300,406	0,994	0,061	7,170	50,41%	2,13%	10,57%	2,10%	0,23%
(5,10,10)	0,362	300,483	2,622	0,039	8,463	15,24%	0,09%	2,31%	1,32%	0,08%
(5,20,10)	0,614	300,743	2,872	0,082	16,843	13,76%	0,15%	2,86%	1,88%	0,04%
(5,5,10)	0,362	296,317	0,764	0,024	4,207	19,06%	0,32%	0,94%	1,26%	0,32%
(5,5,20)	0,108	300,527	1,698	0,050	13,319	19,58%	0,15%	1,29%	2,54%	0,15%

Table: Results of cold-starting the upper-bound procedures

• Multistarting PFW yields small gaps in reasonable time.

Warmstarting primal procedures

	Gap				Time			
(n_1, n_2, S)	DNN+FW+Gurobi	$DNN+\mathtt{fmincon}$	DNN+Gurobi	DNN+FW	DNN+FW+Gurobi	$DNN+\mathtt{fmincon}$	DNN+Gurobi	DNN+FW
(10,5,10)	0,26%	0,63%	0,31%	0,27%	292,431	1,139	291,379	0,534
(20,5,10)	0,54%	1,43%	1,87%	0,82%	301,150	1,797	301,163	0,796
(5,10,10)	0,08%	0,72%	0,09%	0,10%	301,038	1,819	301,048	0,591
(5,20,10)	0,04%	0,47%	0,17%	0,04%	301,598	6,654	301,595	0,908
(5,5,10)	0,32%	0,33%	0,32%	0,34%	301,769	1,125	301,419	0,548
(5,5,20)	0,15%	0,25%	0,15%	0,21%	301,089	1,982	301,006	0,505

Table: Warmstarting the upper bound procedures: gaps and runtimes

• Using the upper bounds to warm start primal algorithms can be advantageous.

Experiments on dissecting the probability measure

Recall the successively refining partition of the sample space:

Markus Gabl (IOR-KIT)

SSTQP

- We consider the historical mean return and variance of returns of ten assets based on ten time series.
- For assets i ∈ [1:5] a longer time series of 48 days is available while for assets i ∈ [6:10] only a short time series of 12 days is available.
- Hence, we consider the portion of the covariance matrix that involve the latter assets to be uncertain and we consider the model:

$$\min_{\mathbf{x}\in\mathcal{T}^{5}}\left\{\mu_{x}^{\mathsf{T}}\mathbf{x} + \mathbf{x}^{\mathsf{T}}\boldsymbol{\Sigma}_{xx}\mathbf{x} + \mathbb{E}\left[\min_{\mathbf{y}\in\mathcal{P}_{x}}\mu_{y}^{\mathsf{T}}\mathbf{y} + 2\mathbf{x}^{\mathsf{T}}\boldsymbol{\Sigma}_{xy}\mathbf{y} + \mathbf{y}^{\mathsf{T}}\boldsymbol{\Sigma}_{yy}\mathbf{y}\right]\right\}$$
(3)

- We consider the historical mean return and variance of returns of ten assets based on ten time series.
- For assets i ∈ [1:5] a longer time series of 48 days is available while for assets i ∈ [6:10] only a short time series of 12 days is available.
- Hence, we consider the portion of the covariance matrix that involve the latter assets to be uncertain and we consider the model:

$$\min_{\mathbf{x}\in\mathcal{T}^{5}}\left\{\mu_{x}^{\mathsf{T}}\mathbf{x} + \mathbf{x}^{\mathsf{T}}\boldsymbol{\Sigma}_{xx}\mathbf{x} + \mathbb{E}\left[\min_{\mathbf{y}\in\mathcal{P}_{x}}\mu_{y}^{\mathsf{T}}\mathbf{y} + 2\mathbf{x}^{\mathsf{T}}\boldsymbol{\Sigma}_{xy}\mathbf{y} + \mathbf{y}^{\mathsf{T}}\boldsymbol{\Sigma}_{yy}\mathbf{y}\right]\right\}$$
(4)

Despite the presence of a linear term, the above optimization problem can be rewritten as

$$\min_{x \in T^{5}} \left\{ x^{\mathsf{T}} \bar{\Sigma}_{xx} x + \mathbb{E} \left[\min_{y \in P_{x}} 2x^{\mathsf{T}} \bar{\Sigma}_{xy} y + y^{\mathsf{T}} \bar{\Sigma}_{yy} y \right] \right\}$$

where

$$\begin{split} \bar{\boldsymbol{\Sigma}}_{xx} &\coloneqq \boldsymbol{\Sigma}_{xx} + \frac{1}{2} \left(\boldsymbol{\mu}_{x} \mathbf{e}^{\mathsf{T}} + \mathbf{e} \boldsymbol{\mu}_{x}^{\mathsf{T}} \right) ,\\ \bar{\boldsymbol{\Sigma}}_{xy} &\coloneqq \boldsymbol{\Sigma}_{xy} + \frac{1}{2} \left(\boldsymbol{\mu}_{x} \mathbf{e}^{\mathsf{T}} + \mathbf{e} \boldsymbol{\mu}_{y}^{\mathsf{T}} \right) ,\\ \bar{\boldsymbol{\Sigma}}_{yy} &\coloneqq \boldsymbol{\Sigma}_{yy} + \frac{1}{2} \left(\boldsymbol{\mu}_{y} \mathbf{e}^{\mathsf{T}} + \mathbf{e} \boldsymbol{\mu}_{y}^{\mathsf{T}} \right) . \end{split}$$

- We approximated the problem via the scenario approach
- the covariance matrix were generated from a elementwise normal distribution, i.e. $(\Sigma)_{ij} \sim N((\hat{\Sigma})_{ij}, \sigma)$ with $\hat{\Sigma}$ the empirical covariance matrix and $\sigma = 1$
- Scenarios with $S \in \{100, 500, 1000, 5000, 10000\}$ were generated.

Numerical experiments on portfolio optimization

5	Obj	Gap	Time
100	163.59	0,00%	0.47
500	163.60	0,00%	1.07
1000	163.60	0,00%	2.27
5000	163.57	0,00%	10.84
10000	163.58	0,00%	22.49

Table: Results of the portfolio optimization experiment

- In our experiments, all instances were solved using merely the reduced conic relaxation
- Hence, there are real-world applications where gaps can be closed confidently using the basic strategies.

- I. M. Bomze, M. Dür, E. De Klerk, C. Roos, A. Quist, and T. Terlaky. On copositive programming and standard quadratic optimization problems. *Journal of Global Optimization*, 24(2):163–185, 2002.
- [2] I. M. Bomze, F. Rinaldi, and D. Zeffiro. Frank–Wolfe and friends: a journey into projection-free first-order optimization methods. 4OR – A Quarterly Journal of Operations Research, , in press, 2021.
- [3] S. Burer. On the copositive representation of binary and continuous nonconvex quadratic programs. *Mathematical Programming*, 120(2):479–495, 2009.
- [4] F. Maggioni and G. C. Pflug. Bounds and approximations for multistage stochastic programs. *SIAM Journal on Optimization*, 26(1):831–855, 2016.

Thank you

• • • • • • • •