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Effective > no over-conservatism
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Effective > no over-conservatism

Dependable > certified decisions

Agnostic [=> no information other than data

The way of the scenario approach: enforce design goals
heuristically, possibly in various attempts (tunable schemes);
provide the user with a solid theory to assess the quality of
the solution(s) to decide when goals are met



Ingredients of the decision problem

Decision vector: z e X

Convex cost function: ¢(z)

Family of convex constraint sets: X

Scenarios: ¢(1) §(2)  s(V)
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Worst-case scenario optimization
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Scenario optimization with constraints relaxation
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Scenario optimization with constraints relaxation
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A general scenario decision-making framework
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Decision map M : 6%, ... 6™ — (z*,w") such that when

new scenarios 6Vt §(N+H) 3re added:

-if 2 € Xsv+i for all i, then sol does not change

\ )
Y

2™ already feasible

hen solution must change

x " unfeasible for some cases

|::> worst-case optimization, opt. with constraint relaxation,
expected shortfall optimization, variational inequalities, ...
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- easy (algorithmically speaking) and widely applicable

- data used to directly target the objective

—)> effective solutions!



Scenario approach: main features

- easy (algorithmically speaking) and widely applicable

- data used to directly target the objective

—)> effective solutions!

- feasibility addressed empirically

> dependability of the scenario approach
rests on our capability to keep control of
the actual feasibility (risk)



Risk

Vi) =P{6 € A: =z ¢ X5} out-of-sample constraint violation

violated
constraints

satisfied
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V(x) = “size” of red region



Solution certification

c(x) vs. V(x)=P{oe A: x¢& Xs}

<&
<&

[P = mechanism by which § is generated

scenario decision certification

> c(z™) accessible (once z* is computed)

> vi(z*)



Solution certification

clz) vs. V(iz)=P{oe A: =& Xs}

v v
cost risk

scenario decision certification

> c(z™) accessible (once z* is computed)

> V(z*) not accessible



Solution certification

main issue: to evaluate V(x*)



Why not validation

e using some data for testing rather than designing...
waste of information, questionable!

e scenarios (data) are often limited resources (collecting
data can be time-consuming or burdensome, involving
a monetary cost)

* in the present context validation is not necessary!



Risk of the scenario decision

Problem: assess V(z*)
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Risk of the scenario decision

Problem: assess V(z*) = V(z*(6V), 532, ..., (V)




Risk of the scenario decision

Problem: assess V(z*) = V(z* (61,63, . ..

500)




Distribution of the risk

V(z*) is a random variable

What about its probability distribution?

How does it change with [P, the mechanism generating § ?

Is it concentrated?



Distribution of the risk: examples

Same decision problem with N = 1000 for various [P
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4

2. no §() can be further removed without changing the solution

1 optimizatio
n direction

Assumption: the support set is
unique with probability 1

. (non-accumulation of
B Rt > constraints in a convex setup)




Support set and complexity

Support set: {5(“)55(""’2% . ;.5(’““)} such that

4

1 sol (5(@)1‘5(@2)““’5(%)) — ool (5(1%5(2)“ - ﬁm)

4

2. no §() can be further removed without changing the solution

complexity 7" = cardinality of
the support set
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A new bivariate perspective

*

n* is a random variable (integer, 7* =k, k€ {0,1,...,N})

V(z*)is a random variable (real, V(z*) =v, v e]0,1])

Study F*(k,v), the bivariate
distribution of [ " ]

V(x*)




Bivariate risk-complexity distribution — Example 1
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Bivariate risk-complexity distribution — Example 2
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Main result (take-home message)

For all consistent decision schemes and distribution-free,
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For all consistent decision schemes and distribution-free,

k
F*(k,v) concentrates around v = ——, k=0,1...., N
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Main result

Choose B € (0,1) (confidence parameter)

Let ez(k), (k) be the unique roots in (0,1) of polynomials

s (-0 (G

m=k

g (f)“ﬁ)M% > (f)(le)mk

m=N-41

Then, irrespective of [P (distribution-free),

[[DN{CSU).} W) e () <V (zY) < EU(W*)} >1-5



Main result

]P’N{(S(l),, L0 e () < V(zY) < eU(ﬂ'*)} >1-p
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Main result

]P’N{(S(l),, L0 e () < V(zY) < EU(*:T*)} >1—-p
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Main result

]P’N{(S(l),, L0 e () < V(zY) < eU(ﬂ'*)} >1-p
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Main result

er(m*) < V(z*) < €”(n*) is true with confidence 1 — 3
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Main result

er(m*) < V(z*) < €”(n*) is true with confidence 1 — 3
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Main result

er(m*) < V(z*) < €”(n*) is true with confidence 1 — 3
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Solution assessment

c(x™) accessible
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Solution assessment
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Solution assessment

c(x™) accessible
accept/reject
the solution

er(7*),€¥(7*)]  accessible

make further decisions

compare various
“solutions”



Cost vs. risk tradeoff
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Cost vs. risk tradeoff (cont’d)
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cost vs. risk tradeoffs

quantitative comparison via c(z}) and [er(7}), €(7})]




Cost vs. risk plot
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Cost vs. risk plot
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Example: Support Vector Regression

Imin
weld,v=0,bel
£;,20,i=1,...,.N

subject to:



Example: Support Vector Regression




Example: Support Vector Regression




Conclusions

 Data are a “gold mine” for decision-making, but good
theories are needed for a reliable exploitation

* Scenario approach: a flexible and effective setup for
data-driven decision making with a good theory to assess
the reliability of the solution

At averygeneral level, the complexity =™ (visible) carries
fundamental information on the risk V(z*) (hidden)

* Therisk can be estimated from the complexity, without
resorting to (possibly unreliable) prior information



Thank you !
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