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Minimax Optimization min max L(z, y)
r oy

(5 minutes) Minimax problems in learning.
(10 minutes) Difficulties in nonconvex-nonconcave regimes.
(20 minutes) One (optimizer’s) path for avoiding these difficulties.

(5 minutes) Extensions and other paths forward.

1/38



Minimax Optimization in Machine Learning

Many machine learning problems fit in our general minimax form
min max L(x, y).
r Yy
This structure come up consistently throughout the week.
A few examples where difficult minimax problems arise...
(i) Robust Training,
(ii) Generative Adversarial Nets (GANS),
(iii) Reinforcement Learning.
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Robust Training

Consider learning to map features u onto labels v with a model x:

minE, ,y [6(u, v, )]

X

+.007 x :

“panda” perturbation “gibbon"
57.7% confidence 99.3% confidence

[Goodfellow et al., 2015]
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Robust Training

Consider learning to map features u onto labels v with a model x:

min e v ) = minEg, oy imax f(u +y, v, @)
X o X ’ Y

L es
[Madry et al., 2018]
+007x § . [Wang et al., 2019]
etc.
“panda” rbto “gibbon"
57.7% confidence 99.3% confidence

[Goodfellow et al., 2015]
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Generative Adversarial Nets (GANSs)

min max Es~pgata 108 D(5)|+Eenpypen og(1 — D(G(e)))]

G is a network generating fake data from noise.

D is a network discriminating data from fakes.
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Reinforcement Learning _

Given state space S and actions A,

we seek a policy 1T maximizing reward

W:Siljiqi{[o,lj s [Zl:lq (S a)]

[Minh et al., 2013]
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Reinforcement Learning

Given state space S and actions A,
we seek a policy 1T maximizing reward

W:Siljiqi{[o,lj s [Zl:lq (S a)]

Dually, we can seek values V(s)
satisfying the Bellman equation

V(s) = max, {R(s,a) + 1Ey,V(s')}

[Minh et al., 2013]
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Reinforcement Learning

A minimax approach can merge these two ideas

n%}n max (I=y)Es~p [V +Z af Vs, a)

where A[V](s,a) = R(s, a.)+7f']E.sf|.s’a V()] =V(s).
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Minimax Optimization min max L(z, y)
r oy

Two natural ways to view minimax problems:
-A sequential game where x plays first and then y follows,
-A simultaneous game with x and y competing.

For convex-concave objectives**, these perspectives are the same as

min max L(z,y) = maxmin L(z,y) .
x Y Y x
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Minimax Optimization min max L(z, y)
r oy

Two natural ways to view minimax problems:
-A sequential game where x plays first and then y follows,
-A simultaneous game with x and y competing.

For convex-concave objectives**, these perspectives are the same as

min max L(z,y) = maxmin L(z,y) .
x Y Y x

However, our motivating examples are not convex-concave!
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Existing Theory - Sequentially Handling Nonconvexities

Globally, Approximately Solve the "'max " Subproblem.
If we can solve over y, the problem reduces to nonconvex minimization
min ¢(x) := max L(x, y)

XL Y
[Rafique et al, 2018] [Lin et al, 2019, 2020] [Thekumparampil et al, 2019]...

Locally, Approximately Solve the ""'max"" Subproblem.
[Heusel et al, 20171 [Mangoubi and Vishnoi, 2021]...

Exploring notions of what minimax stationary means.
[Daskalakis and Panageas, 201810Jin et al, 2020l[Mazumdar et al, 20201
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Our focus - Simultaneous Game Perspective

Our goal: Find " First-Order Nash Equilibrium™
(stationary points) F(x,y) = [

—vchc,y)] !
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Our focus - Simultaneous Game Perspective

Our goal: Find " First-Order Nash Equilibrium™

(stationary points) Fl(x,y) = [ =0
yp (z,y) —VyL(CC, y)

Common/basic first-order algorithms:
Gradient Descent Ascent (GDA) zp.1 = 2 — o F(21)

| 1 =2 — Ve LT yr

Alternating GDA (AGDA) d Th1 = Tk — Wk Val(Th, up)
Y1 = Yk + 4 VyL(Tp 11, yg)

Proximal Point Method (PPM) 211 = 25, — o F(23.41)

Extragradient Method (EGM) ) “k+1 =~k — %F<7f/f>
D1 = 2 — pF(Zp41) /28



Our focus - Simultaneous Game Perspective

Our goal: Find " First-Order Nash Equilibrium™

(stationary points) F(x,y) = [ Val(z, y))] =0

—VyL(z,y
Common/basic first-order algorithms:
Gradient Descent Ascent  (GDA) 2pi1 = 2 — apF'(2g)

Alternating GDA (AGDA) d Th1 = Tk — Wk Val(Th, up)
Ykl = Yk + o VyL(@p 1, k)
Proximal Point Method  (PPM) ;.| = 2z, — a. F(21.41)

Extragradient Method (EGM) ) “k+1 =~k — %F<7f/f>
D1 = 2 — pF(Zp41) /28



Minimax Difficulty Ex 1 (of 2)
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Minimax Difficulty Ex 1 (of 2) [Lee and Kim, 2021]

) 0.5+
g forx <y — %
04
fay) <—%(x—y)2—vLR(w—y) fory— /& <z <y
Ly) = 0.5
%(w—y)z—\/LR(x—y) fory <z <y-+ %
1
\—% fory+ /% <z 1
0 05 |

Every point on the line x=y has gradient operator point in this line!
No method moving in the span of these will ever escape this line!
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Minimax Difficulty Ex 2 (of 2)
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Minimax Difficulty Ex 2 (of 2)

min max f(x) + CUTA'Z/ —9(y)
T Y
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Minimax Difficulty Ex 2 (of 2)

min max f(x) + CUTA'Z/ —9(y)
€ Y

f\

(x = 3)(x — 1)(z + 1)(z + 3)
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Minimax Difficulty Ex 2 (of 2)

min max f(x) + CUTA'Z/ —9(y)
Y

§ Zx) + x‘Ay

”»

TY=

XTAy - 3( y)
v

f(z) = g(x) = (@ = 3)(@ = 1)(x + 1)(z +3)
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Minimax Difficulty Ex 2 (of 2)

ﬁ

min max f(x) + CUTA'Z/ —9(y)
T Y

S(’O M way

XTAy ’3()«)

v

x)=g(x)=(x —3)(z —1)(x + 1)(x + 3)
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Minimax Difficulties

First-order updating can get stuck in a
subspace or be attracted into a cycle 3}
(right Proximal Point Method shown).
: ofo !
051

0

0.5 4
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The Question

When do standard algorithms

o
T

converge despite nonconvexities
and nonconcavities?

&
N

I ofe
~N
S
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Existing Theory for Handling Nonconvexities

Strong Structural Assumptions.

-[Lui et al, 2020] assumes global solution to a Variational Inequality,

-[Nouiehed et al, 2019] [Yang et al, 2020] assume a PL condition,

-[Bauschke et al, 2020] assumes smoothness and bounded negative cocoercivity,
-[Ostrovskii et al,2021] assumes very small domain for maximizing variable,
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https://arxiv.org/search/math?searchtype=author&query=Ostrovskii%2C+D+M

An Observation about our Toy Example

The interaction between x and y controls the algorithmic behavior.

4r 4t
2r 27
Of Of
2 2
-4 : -4t
4 2 0 2 4 -4 2 0 2 4

= A=10 A =100

14/38



This Convergence Landscape Holds in General!

Convergence for generic minimax problems is controlled by V%yL(x, Y).

L

Interaction Weak Regime:
Local convergence occurs

4 2 0 2 4

4}

4t

4 ! 0 2 4
Interaction Moderate Regime:
Cycling and divergence can

when V;%yL(x, y) is sufficiently occur, preventing guarantees.

bounded and Lipschitz.

4t

4}t

-4 E 0 2 4
Interaction Dominate Regime:
Global convergence occurs when
V;%yL(x, y) dominates any negative
curvature in Vy, L(z,y), =V, L(2, y)



Formalizing our
Landscape Picture
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Formalizing our
Landscape Picture

We consider unconstrained problems ’,l.%
2F
min max L(x,y)

r€ER™ yeR™

with a twice differentiable objective,
and apply the Proximal Point Method 2}
(.Cl?k_{_l, yk’—|—1) — pI‘OX,n((Ek-’ yk})

= arg.lfxel]%&% max L(u,v) + g”u — ap|* - g”U —ull?. 2 o) ; -
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Classic Convergence Review

Classically, an objective function is 8-smooth if
IVL(z) = VL(')|| < Bz — 2|
and u>0-strongly convex-strongly concave if
Vi L(z)=pul, =V L(z)=pul.
Theorem. Under these two conditions, Gradient Descent Ascent (GDA)
[xkﬂl _ [3%] . [ VaL(zg, yi) ]
Ykt 1 Yk —VyL(zy, yi)

linearly converges to the unique minimax solution for small enough s.
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Our Convergence Assumptions '

We avoid both of these strong assumptions.
We only assume p-weak convexity in x

9 .
V:l?mL'(Z) t —[)I ’ &

X L(x,y)

and symmetrically, p-weak concavity in y ||

2
V2 L(z) = —pI
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Our Convergence Assumptions T" = L(xy)

We avoid both of these strong assumptions.

We only assume p-weak convexity in x .':
2 1/ : :
v:mrL(Z) > —/)I ) ¢ o >
: N A v \ v
and symmetrically, p-weak concavity in y !

- ~n AT Iy
VL) = —pl .t e s
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Core Tool

We consider the saddle envelope of [Attouch and Wets, 1983]
o M — 12— Ty — o112
Ly(z,y) := min max L(u, v) + Zfju — " = v = y[I" .

(This generalizes the Moreau envelope, of which | am a huge fan.)
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Core Tool

We consider the saddle envelope of [Attouch and Wets, 1983]

Ly(x,y) = min max L(u,v) + 2l — 2|* = 2]l = y||” .

ueR" veR™

(This generalizes the Moreau envelope, of which | am a huge fan.)

Y

My dog ~"Moreau ™
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Core Tool

We consider the saddle envelope of [Attouch and Wets, 1983]

Ly(x,y) = min max L(u,v) + 2l — 2|* = 2]l = y||” .

ueR" veR™

(This generalizes the Moreau envelope, of which | am a huge fan.)

Insights for Nonconvex-Nonconcave Objectives.
(i) The saddle envelope closely follows L(x,y).
(ii) The saddle envelope is 3-smooth, even if L(x,y) isn’t.
(iii) The saddle envelope can be convex-concave, even if L(x,y) isn’t.
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Gradients of the Saddle Envelope

Proposition. The gradient of the saddle envelope is given by

oo v = e =] = [Tefen v

where <ZC_|_, y+) — pI'OXn<$, y)
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Gradients of the Saddle Envelope

Proposition. The gradient of the saddle envelope is given by

oo v = e =] = [Tefen v

where (x-l—a y-|—) — pI'OXn<$, y)

Corollary 1. The saddle envelope preserves stationary points

VL(z,y) =0 <= VL,(z,y)=0.
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Gradients of the Saddle Envelope

Proposition. The gradient of the saddle envelope is given by

oo v = e =] = [Tefen v

where (x-l—a y-|—) — pI'OXn<$, y)

Corollary 2. Applying GDA on the saddle envelope with step-size
s=A/n

qujvalent to the following damped PPM on L(x,y)
[S‘E%#] = (1 -\ E[i%T + X prox, (T, y) -

Yk+1 Yk
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Hessians of the Saddle Envelope

Proposition. The Hessian of the saddle envelope is given by

V2. Ly(2) vi,anz)] ( [W L(z) V? L<Z+>D‘1
V2 Ly(2) =V, Lyz)| =TT\ T V2 L(zy) =V, L(z)

where z; = prox,(z).
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Hessians of the Saddle Envelope

Proposition. The Hessian of the saddle envelope is given by

2 LL 2 [ 2 L, 2 [ -
- Vo U(Z) - Vayy U(Z) - Vo (Z‘l‘) - Vo (Z‘l‘)

where z; = prox,(z).
Corollary 3. The saddle envelope is smooth with constant
max{n, [n~ = p~'| 7'} .

For convex-concave problems, this simplifies to n-smoothness.
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Hessians of the Saddle Envelope

Proposition. The Hessian of the saddle envelope is given by

2 LL 2 [ 2 L, 2 [ -
- Vo U(Z) - Vayy U(Z) - Vo (Z‘l‘) - Vo (Z‘l‘)

where z; = prox,(z).

Corollary 4. The saddle envelope is strongly convex in x whenever
V,Q”L(z) - ViyL(z) (nl — Vf/yL(z))_IVZIL(z) > ol
and strongly concave in y whenever
2 2 , 2 W\~ 12
—V, L(2) +V,, L(z)(n] + V, L(2)) Vi, L(z) = ol .
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The Saddle Envelope Convexifies!

For example, the saddle envelope is convex-concave whenever
2 2 2 2

n+p n+p
provided the objective has -Lipschitz gradient in x and y separately.

~ —V2 L(2), - ngL(z)
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The Saddle Envelope Convexifies!

For example, the saddle envelope is convex-concave whenever
2 2 2 2
n+po ‘ n+p
provided the objective has -Lipschitz gradient in x and y separately.

P
- Vny(z)

Definition. We say an objective is a-interaction dominant if
2 2 2 — 172
V. L(z)+ V:L,yL(z) (nl — Vny(z)) Vyl,L(z) = ol
2 2 ' 2 \\ — 172
—V,, L(2) + V, , L(2)(n] + V3, L(2) Vi, L(z) = ol .
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This Convergence Landscape Holds in General!

Convergence for generic minimax problems is controlled by V;ZvyL(x, Y).

L

Interaction Weak Regime:
Local convergence occurs

4 2 0 2 4

4}

4t

4 ! 0 2 4
Interaction Moderate Regime:
Cycling and divergence can

when V?CyL(x, y) is sufficiently occur, preventing guarantees.

bounded and Lipschitz.

At

4}

-4 E 0 2 4
Interaction Dominate Regime:
Global convergence occurs when
V%yL(a:, y) dominates any negative
curvature in Vy, L(z,y), =V, L(2, y)



Interaction Dominant

Convergence af
2_
C L
VrN
)
2f
4t _
-4 2 0 2 4

V:%yL(:c, y) = 100

23/38



Interaction Dominant

Convergence af
Theorem.
If a>0-interaction dominant holds in x and y, 4 ' |
the damped PPM with n=2p and A=(1+n/a)* \ ,,{
converges to a stationary point with =) ‘

T — * 2 1 k ek 2 . l, A

vl = (- mmrm) =l

7 i B (2p/a+ 1) Yo — Y -2

-4t, :
-4 2 0 2 4

V%yL(x, y) = 100
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Interaction Dominant

Convergence af
Theorem.
If a>0-interaction dominant holds in x and y, 4 |
the damped PPM with n=2p and A=(1+n/a)* \ ,,,{
converges to a stationary point wi Or &
y point with = /0 ‘
%7 |2 1 k %7 1|2 l’ )
| S e N [ '
=y ]| (2p/a+ 1) Yo —y* -2
Proof Ingredients.
1. The saddle envelope is very structured. '4:4 ;) 0 2 4
2
2. GDA converges on the saddle envelope. V:pyL@fa y) = 100

3. Equivalently, PPM converges on L(x,y).
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One-Sided Interaction Dominant Convergence

Theorem. If a-interaction dominance holds in x or y, a PPM variant has

T> 02 = min|VL(z)| < ¢ .
k<T
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One-Sided Interaction Dominant Convergence

Theorem. If a-interaction dominance holds in x or y, a PPM variant has
T>0(2) = min||[VL(z)| < <.
E<T
Proof Ingredients.
1. The saddle envelope will still be smooth and nonconvex-concave.
2. [Lin et al., 2019] give a GDA variant for nonconvex-concave problems.
3. Thus a PPM variant works for such nonconvex-nonconcave problems.

24/38



Interaction Weak
Convergence
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Interaction Weak
Convergence

If there was no interaction: ViyL(z) = (
then a stationary point follows from solving

{3;* = a local minimizer of min,, L(u, ')

y* = a local maximizer of max, L(2',v).
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Interaction Weak

Convergence af
If there was no interaction: ViyL(z) = () Z,l%
then a stationary point follows from solving
r* = a local minimizer of min, L(u, ) &
y* = a local maximizer of max, L(x’, v).
2f
If interaction is small, we initialize PPM with .

ro = a local minimizer of min, L(u,y’) -4 ; 0 2 4
Yo = a local maximizer of max, L(z',v) . ViyL(z,y)

25/38



Example Initialization when A is small

ro = a local minimizer of min, L(u,0)
1o = a local maximizer of max, L(0, v)
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Example Initialization when A is small

Yo = a local maximizer of max, L(0, v)

{xo = a local minimizer of min, L(u,0)
o

:f(x) . x’Ay
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Example Initialization when A is small

ro = a local minimizer of min, L(u, 0)
1o = a local maximizer of max, L(0, v) y=)
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Interaction Weak
Convergence
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Interaction Weak

Convergence af
Theorem. Z\JJ%
The damped PPM with n=2p and

A=(1+2n/as)* converges to a stationary point ¢!

o

T[?:y] E (1‘<4p/a~i+1>2>k [23: :ﬂ | 21( %7'4
1(z0,90) — (', )|l al | ‘ |

provided is sufficiently 4 E
small and the Hessian’s interaction term is V%y[,(;p, ) =
sufficiently small and Lipschitz.
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Interaction Moderate
Cycling and Divergence at

4 2 0 2 4
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Interaction Moderate

Cycling and Divergence at
Cycling. Our running example shows that i
globally attractive limit cycles can form.
0_
2F
4t :
-4 2 0 2 4

V%yL(ZE, y) = 10
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Interaction Moderate
Cycling and Divergence

Cycling. Our running example shows that
globally attractive limit cycles can form.

Divergence. The boundary of our

interaction dominant regime is tight.

(For any a<0, we can construct a diverging
a-interaction dominant problem).

See [G., Lu, Worah, Mirrokni, 2020] for
full details and some limited theory.

2 0 2

28/38



This Convergence Landscape Holds in General!

Convergence for generic minimax problems is controlled by V%yL(x, Y).

L

Interaction Weak Regime:
Local convergence occurs

4 2 0 2 4

4}

4t

4 ! 0 2 4
Interaction Moderate Regime:
Cycling and divergence can

when V;%yL(x, y) is sufficiently occur, preventing guarantees.

bounded and Lipschitz.

4t

4}t

-4 E 0 2 4
Interaction Dominate Regime:
Global convergence occurs when
V;%yL(x, y) dominates any negative
curvature in Vy, L(z,y), =V, L(2, y)



Minimax Optimization min max L(z, y)
oy

(5 minutes) Minimax problems in learning.
(10 minutes) Difficulties in nonconvex-nonconcave regimes.
(20 minutes) One (optimizer’s) path for avoiding these difficulties.

(5 minutes) Extensions and other paths forward.



Extension to Nonsmooth/Constrained Settings

We can no longer use second-order characterizations.
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Extension to Nonsmooth/Constrained Settings

We can no longer use second-order characterizations.

Instead, we use a first-order operator characterization:
F(z,y) = 0. L(x,y) x —=0,L(z,y)
p-weak convexity-weak concavity becomes negative monotonicity
(F(z) = F(2),2 =) > —pllz = |
O-interaction dominance becomes 'negative comonotonicity

(F(2) = F(2), 2= 2) 2 =n|| F(2) = F ()|’
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Extension to Other Algorithms?
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Extension to Other Algorithms?

Positive Results:
If we additionally assume smoothness of L(x,y),
the Extra-gradient Method (EGM) converges similarly.

No-So Positive Results:
(Alternating) Gradient Descent Ascent follows a different landscape.
ODE tools can still give us some insights.
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N

N

Landscape of the Extragradient Method

[fi“ || _vxL(xka?/k>]
gl vk - VyL(x, yk)
[xk+1_ _ _$k_ 1 ——VxL(if?a@)]
Yk+1 | | Yk | i V,L(%,9)

N

H I
4

4 2 0 2 4 4 E 0 2 4

A=1 A =10

N




Interaction Dominant
Convergence for EGM

Theorem.

If the objective function L(x,y) is
(i) a>0-interaction dominant in x and y,
(ii) sufficiently B-smooth,
(iii) stepsizes are chosen carefully,

then a damped EGM converges linearly.

See [Hajizadeh, Lu, G., 2022] for full details.
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Landscape of Gradient Descent Ascent

Ll+1
Yk+1

G

Yk

N

=13

N

755025 00 25 50 75

A = 1000

-4 2 0 2 4 4 2 0 2 4 -




Landscape of Alternating Gradient Descent Ascent

Tpy1 = Tk — SVmL(CL‘k, yk)
Ykr1 = Y + SVyL(Tri1, i)




Failure to Extend to GDA and AGDA

We could study the ODE given as the stepsize goes to zero:
[Ratliff et al., 2014] [Nagarajan and Kolter, 20171
[Mazumdar and Ratliff, 2019] [Vlatakis-Gkaragkounis et al., 2019], etc..

Alas, GDA, AGDA, and PPM all have the same ODE limit:

H B [—VxL(x, y)]
and so, this ODE cannot describe differences in their behaviors.
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Higher Order O(s)-ODE Approximations [Lu, 20201
[Shi et al, 2018]

Gradient Descent Ascent ODE

- ooy s [ty o] [

Proximal Point Method ODE

HE s R AR C N | i

Alternating Gradient Descent Ascent ODE

3= ey Rere Sation | o)
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AGDA's ODE Convergence to Limit Points

Let A = V?ML(ZU, y)) B = Viy[/(.’l?, y)7 C = _vzyL(% y) ’

Theorem. The AGDA ODE converges linearly in the norm P = [

1. pRT
I 3sB ]
whenever (and not if the condition is strictly violated)

%SB I

2 2
A+ 5A%+ ST(A%TB +BTBA)  5(ABT + BTC)2+ s-(A?BT + BT C?) 0
£(BTA+CB)+ 2 (BA® + C*B) C+50?+ 2 (cBBT + BBTC)

38738



AGDA's ODE Convergence to Limit Points

Let A=V? L(z,y), B =V L(z,y),C = =V L(z,y).
_ _ I ispT

Theorem. The AGDA ODE converges linearly in the norm P = 1.5 2 7

whenever (and not if the condition is strictly violated) 2

At 5A% 4 2 ( BTB +BTBA) 2(ABT ¢ BTC) + (A2BT +BTc?) o
§(BTA + CB) (BA2 +C%B) C+50% 4 - (CBBT + BB C) |

This alternative norm needed for AGDA aligns with numerical observations:

[G., Lu, Worah, Mirrokni, 2022] 38/38



Minimax Optimization min max L(z, y)
r oy

(5 minutes) Minimax problems in learning.
(10 minutes) Difficulties in nonconvex-nonconcave regimes.
(20 minutes) One (optimizer’s) path for avoiding these difficulties.

(5 minutes) Extensions and other paths forward.
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