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Minimax Optimization 

(5 minutes) Minimax problems in learning.

(10 minutes) Difficulties in nonconvex-nonconcave regimes.

(20 minutes) One (optimizer’s) path for avoiding these difficulties. 

(5 minutes) Extensions and other paths forward. 
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Minimax Optimization in Machine Learning

Many machine learning problems fit in our general minimax form

This structure come up consistently throughout the week.

A few examples where difficult minimax problems arise…
  (i) Robust Training,
 (ii) Generative Adversarial Nets (GANs),
(iii) Reinforcement Learning.
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Consider learning to map features u onto labels v with a model x:

        ``panda’’                     perturbation               ``gibbon’’
57.7% confidence   99.3% confidence

Robust Training

[Goodfellow et al., 2015]
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Consider learning to map features u onto labels v with a model x:

        ``panda’’                     perturbation               ``gibbon’’
57.7% confidence   99.3% confidence

Robust Training

[Madry et al., 2018]
[Wang et al., 2019]
etc.

[Goodfellow et al., 2015]
3/38



G is a network generating fake data from noise.

D is a network discriminating data from fakes.

 

   [Goodfellow et al., 2014]

Generative Adversarial Nets (GANs)
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Reinforcement Learning

Given state space S and actions A,

we seek a policy π maximizing reward

[Minh et al., 2013]
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Reinforcement Learning

Given state space S and actions A,

we seek a policy π maximizing reward

Dually, we can seek values V(s)

satisfying the Bellman equation

      
[Minh et al., 2013]
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A minimax approach can merge these two ideas

where   .

Reinforcement Learning
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Minimax Optimization 

Two natural ways to view minimax problems:

-A sequential game where x plays first and then y follows,

-A simultaneous game with x and y competing.

For convex-concave objectives**, these perspectives are the same as
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Minimax Optimization 

Two natural ways to view minimax problems:

-A sequential game where x plays first and then y follows,

-A simultaneous game with x and y competing.

For convex-concave objectives**, these perspectives are the same as

However, our motivating examples are not convex-concave!
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Globally, Approximately Solve the ``max`` Subproblem. 

If we can solve over y, the problem reduces to nonconvex minimization

 

[Rafique et al, 2018] [Lin et al, 2019, 2020] [Thekumparampil et al, 2019]...

Locally, Approximately Solve the ``max`` Subproblem.
[Heusel et al, 2017] [Mangoubi and Vishnoi, 2021]...

Exploring notions of what minimax stationary means.
[Daskalakis and Panageas, 2018][Jin et al, 2020][Mazumdar et al, 2020]

Existing Theory - Sequentially Handling Nonconvexities
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Our focus - Simultaneous Game Perspective
Our goal: Find ``First-Order Nash Equilibrium``

(stationary points)
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Common/basic first-order algorithms:

Gradient Descent Ascent     (GDA)

Alternating GDA                   (AGDA)

Proximal Point Method         (PPM)

Extragradient Method           (EGM)
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Minimax Difficulty Ex 1 (of 2) 
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Minimax Difficulty Ex 1 (of 2) [Lee and Kim, 2021]
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Every point on the line x=y has gradient operator point in this line!

No method moving in the span of these will ever escape this line!



Minimax Difficulty Ex 2 (of 2)
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Minimax Difficulty Ex 2 (of 2)
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Minimax Difficulties

First-order updating can get stuck in a 

subspace or be attracted into a cycle

(right Proximal Point Method shown).
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The Question

When do standard algorithms 

converge despite nonconvexities 

and nonconcavities?
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Existing Theory for Handling Nonconvexities

Strong Structural Assumptions.
-[Lui et al, 2020] assumes global solution to a Variational Inequality,

-[Nouiehed et al, 2019] [Yang et al, 2020] assume a PL condition,

-[Bauschke et al, 2020] assumes smoothness and bounded negative cocoercivity,

-[Ostrovskii et al,2021] assumes very small domain for maximizing variable,
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https://arxiv.org/search/math?searchtype=author&query=Ostrovskii%2C+D+M


An Observation about our Toy Example

The interaction between x and y controls the algorithmic behavior.
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This Convergence Landscape Holds in General!

Interaction Weak Regime:
Local convergence occurs
when                      is sufficiently 
bounded and Lipschitz.

Interaction Moderate Regime:
Cycling and divergence can 
occur, preventing guarantees.

Interaction Dominate Regime:
Global convergence occurs when
                     dominates any negative 
curvature in

Convergence for generic minimax problems is controlled by                    . 



Formalizing our 
Landscape Picture

15/38



Formalizing our 
Landscape Picture

We consider unconstrained problems

 
with a twice differentiable objective,

and apply the Proximal Point Method
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Classic Convergence Review
Classically, an objective function is β-smooth if

and μ>0-strongly convex-strongly concave if

Theorem. Under these two conditions, Gradient Descent Ascent (GDA)

linearly converges to the unique minimax solution for small enough s.
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Our Convergence Assumptions

We avoid both of these strong assumptions.

We only assume ρ-weak convexity in x

and symmetrically, ρ-weak concavity in y
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Core Tool

We consider the saddle envelope of [Attouch and Wets, 1983]

(This generalizes the Moreau envelope, of which I am a huge fan.)
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(This generalizes the Moreau envelope, of which I am a huge fan.)

My dog ``Moreau``
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Core Tool

We consider the saddle envelope of [Attouch and Wets, 1983]

(This generalizes the Moreau envelope, of which I am a huge fan.)

Insights for Nonconvex-Nonconcave Objectives.

  (i) The saddle envelope closely follows L(x,y).

 (ii) The saddle envelope is β-smooth, even if L(x,y) isn’t.

(iii) The saddle envelope can be convex-concave, even if L(x,y) isn’t.
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Gradients of the Saddle Envelope
Proposition. The gradient of the saddle envelope is given by

  where                                          . 
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Gradients of the Saddle Envelope
Proposition. The gradient of the saddle envelope is given by

  where                                          . 

Corollary 1. The saddle envelope preserves stationary points
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Gradients of the Saddle Envelope
Proposition. The gradient of the saddle envelope is given by

  where                                          . 

Corollary 2. Applying GDA on the saddle envelope with step-size 

s=λ/η 

is equivalent to the following damped PPM on L(x,y)
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Hessians of the Saddle Envelope
Proposition. The Hessian of the saddle envelope is given by

 where                           . 
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Hessians of the Saddle Envelope
Proposition. The Hessian of the saddle envelope is given by

 where                           . 

Corollary 3. The saddle envelope is smooth with constant

For convex-concave problems, this simplifies to η-smoothness.
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Hessians of the Saddle Envelope
Proposition. The Hessian of the saddle envelope is given by

 where                           . 

Corollary 4. The saddle envelope is strongly convex in x whenever

 
 and strongly concave in y whenever
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The Saddle Envelope Convexifies!
For example, the saddle envelope is convex-concave whenever

provided the objective has β-Lipschitz gradient in x and y separately.
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The Saddle Envelope Convexifies!
For example, the saddle envelope is convex-concave whenever

provided the objective has β-Lipschitz gradient in x and y separately.

Definition. We say an objective is α-interaction dominant if
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This Convergence Landscape Holds in General!
Convergence for generic minimax problems is controlled by                    . 

Interaction Weak Regime:
Local convergence occurs
when                      is sufficiently 
bounded and Lipschitz.

Interaction Moderate Regime:
Cycling and divergence can 
occur, preventing guarantees.

Interaction Dominate Regime:
Global convergence occurs when
                     dominates any negative 
curvature in



Interaction Dominant 
Convergence
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Interaction Dominant 
Convergence
Theorem. 
If α>0-interaction dominant holds in x and y, 
the damped PPM with η=2ρ and λ=(1+η/α)-1

converges to a stationary point with
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Theorem. 
If α>0-interaction dominant holds in x and y, 
the damped PPM with η=2ρ and λ=(1+η/α)-1

converges to a stationary point with

Proof Ingredients.

1. The saddle envelope is very structured.

2. GDA converges on the saddle envelope.

3. Equivalently, PPM converges on L(x,y).

Interaction Dominant 
Convergence
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One-Sided Interaction Dominant Convergence

24/38

Theorem. If α-interaction dominance holds in x or y, a PPM variant has



One-Sided Interaction Dominant Convergence

Theorem. If α-interaction dominance holds in x or y, a PPM variant has

Proof Ingredients.

1. The saddle envelope will still be smooth and nonconvex-concave.

2. [Lin et al., 2019] give a GDA variant for nonconvex-concave problems.

3. Thus a PPM variant works for such nonconvex-nonconcave problems.
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Interaction Weak 
Convergence
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Interaction Weak 
Convergence

If there was no interaction:

then a stationary point follows from solving
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Interaction Weak 
Convergence

If there was no interaction:

then a stationary point follows from solving

If interaction is small, we initialize PPM with
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Example Initialization when A is small
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Example Initialization when A is small
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Example Initialization when A is small
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Interaction Weak 
Convergence
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Interaction Weak 
Convergence

Theorem.

The damped PPM with η=2ρ and 

λ=(1+2η/α0)-1 converges to a stationary point 

with

provided                                       is sufficiently 

small and the Hessian’s interaction term is 

sufficiently small and Lipschitz. 27/38



Interaction Moderate 
Cycling and Divergence
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Interaction Moderate 
Cycling and Divergence

Cycling. Our running example shows that

globally attractive limit cycles can form.
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Interaction Moderate 
Cycling and Divergence

Cycling. Our running example shows that

globally attractive limit cycles can form.

Divergence. The boundary of our

interaction dominant regime is tight.

(For any α≤0, we can construct a diverging

 α-interaction dominant problem).

See [G., Lu, Worah, Mirrokni, 2020] for

full details and some limited theory. 28/38



This Convergence Landscape Holds in General!

Interaction Weak Regime:
Local convergence occurs
when                      is sufficiently 
bounded and Lipschitz.

Interaction Moderate Regime:
Cycling and divergence can 
occur, preventing guarantees.

Interaction Dominate Regime:
Global convergence occurs when
                     dominates any negative 
curvature in

Convergence for generic minimax problems is controlled by                    . 



Minimax Optimization 

(5 minutes) Minimax problems in learning.

(10 minutes) Difficulties in nonconvex-nonconcave regimes.

(20 minutes) One (optimizer’s) path for avoiding these difficulties. 

(5 minutes) Extensions and other paths forward. 



Extension to Nonsmooth/Constrained Settings

We can no longer use second-order characterizations.
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Extension to Nonsmooth/Constrained Settings

We can no longer use second-order characterizations.

Instead, we use a first-order operator characterization: 

ρ-weak convexity-weak concavity becomes ``negative monotonicity``

0-interaction dominance becomes ``negative comonotonicity``
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Extension to Other Algorithms?
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Extension to Other Algorithms?

Positive Results:

If we additionally assume smoothness of L(x,y),

the Extra-gradient Method (EGM) converges similarly.

No-So Positive Results:

(Alternating) Gradient Descent Ascent follows a different landscape.

ODE tools can still give us some insights.
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Landscape of the Extragradient Method



Interaction Dominant 
Convergence for EGM

Theorem. 
If the objective function L(x,y) is
   (i) α>0-interaction dominant in x and y, 
   (ii) sufficiently β-smooth,
   (iii) stepsizes are chosen carefully,
then a damped EGM converges linearly.

See [Hajizadeh, Lu, G., 2022] for full details.
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Landscape of Gradient Descent Ascent



Landscape of Alternating Gradient Descent Ascent



Failure to Extend to GDA and AGDA

We could study the ODE given as the stepsize goes to zero:
[Ratliff et al., 2014] [Nagarajan and Kolter, 2017]
[Mazumdar and Ratliff, 2019] [Vlatakis-Gkaragkounis et al., 2019], etc…

Alas, GDA, AGDA, and PPM all have the same ODE limit:

and so, this ODE cannot describe differences in their behaviors.
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Higher Order O(s)-ODE Approximations   [Lu, 2020]
[Shi et al, 2018]

Gradient Descent Ascent ODE

Proximal Point Method ODE

Alternating Gradient Descent Ascent ODE
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AGDA’s ODE Convergence to Limit Points

Let .

Theorem. The AGDA ODE converges linearly in the norm

whenever  (and not if the condition is strictly violated)

  .
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AGDA’s ODE Convergence to Limit Points

Let .

Theorem. The AGDA ODE converges linearly in the norm

whenever  (and not if the condition is strictly violated)

  .

This alternative norm needed for AGDA aligns with numerical observations:

AGDA      vs GDA

[G., Lu, Worah, Mirrokni, 2022] 38/38
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Thank You All for 
the Fantastic 
Workshop! 

Questions?


