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First-Order Deterministic Optimization I

- Leading computational approach for large-scale optimization and machine learning,

- Simplest algorithm: Gradient descent (GD):

_ 2 2 , L
a=a:= — pop =1 with x=—.
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First-Order Deterministic Optimization II

- Accelerated Gradient Descent (AGD): [Nesterov, 1983]

+ Averages last two iterates for dampening oscillations.

*+ Faster than gradient descent by tuning the momentum parameter /.

(X — Xg—1)

Momentum

- When f is py-strongly convex and L-smooth (f € SL(RY)), accelerated linear rate p,.:

1 Vr=1 |
Lo Vet Ve

More general a, f = rate p(a, f) |Hu, Lessard, ICML 2019]
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Stochastic Optimization

= In many settings, gradients contain random noise:

+ Stochastic optimization or statistical learning setting: f(x) = E,_ _pF(x, ®)

P Example: Empirical risk minimization, logistic regression, linear regression.

*+ Privacy-preserving empirical risk minimization.

- Consider

min f(x),
xXeX

where 2 € R?is compact and f(x) is u-strongly convex and L-smooth (f € SLRY)).

Assumption 1: We have only access to stochastic (noisy) estimate, Vf(x), of the gradient Vf(x), at
the point x € R? satisfying

[V - VA 11 =0 & E[[VF) - VI | %] < 6* for some o > 0. L,)
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Triple momentum method (Generalized Momentum Methods)

- Unconstrained case (2 = R9)

- Iriple momentum method (IMM):
Xir1 = X + Pl = x=p) = a V).
Yia1 = X+ 700 — X_ 1),

- TMM 1s studied in [Hu & Lessard, 2017],[Scoy et al., 2018],[Cyrus et al., 2018] tfor deterministic

optimization (fastest among deterministic first order algs.)

- T'MM covers popular first order methods:

* [y = p = 0]: Gradient descent (GD), *+ [y = p]: Nesterov’s accelerated gradient
descent (AGD),

Xyl = X + PG — X 1) — Ofvf(Yk)»
Viel = X+ PG — x_1)

X1 = X — O‘vf()’k)-
*+ [y = 0]: Heavy-ball method (HB),

Xip1 = X+ PO = x_1) — a VAx).
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Momentum: Sensivity to noise

Deterministic gradients Stochastic gradients
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Figure: Standard AGD witha = 1/Land f = (1 —+/1/x)/(1 ++/ 1/x) on quadratic objective under the various noise levels: ¢ = O (left) and 6 > 1
(right)

- Momentum methods are sensitive to persistent noise in the gradients |d’Aspremont, 2008],
| Devolder, 2013]|, may even diverge|l'lammiron & Bach, 2015].



RUTGERS

Business School
Newark and New Brunswick

Momentum: Effect of noise

1 —4\/au
- AGD with g = ver

L+ /i

Stationary Stationary
Noise Distribution Distribution Noise Distribution Distribution
—llnput n(?ise: o= Q.1 1 —lOutput rloise: o =[O — Input noise: ¢ = 0.1 —Output noise: ¢ = 3.0
” 0.9} - I
Slow: | ‘Fast
s ) 5 >

1
(@) a = 0 Slow but accurate (b) @ = — Fast but inaccurate

. : T L
(low variance/bias for suboptimality) (high variance/bias for suboptimality)
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Momentum: Effect of noise

R
- Input noise vs equilibrium distribution for AGD with g =

|—Input noise: 0 =0 1] —Output noise: o = 3.0 1 + a//t
: . = Qutput noise: o = 0.7
T T T T T T T 08¢ T T T T T T T T 7

| |

—Input noise: o = 0.1 —Qutput noise: ¢ =0 H ”
T T T 1 T T T

Theorem [Can, Zhu, M.G; ICML 2019]

Under some technical assumptions on the noise, the distribution 7, of AGD iterates {z,} converge linear

y with

rate p(a, ) w.r.t. 1-Wasserstein distance where p(a, f) 1s the rate of the (deterministic) accelerated GD a

Re-usable proot technique for Bayesian

Wasserstein distance btw X and Y: with Langevin algorithms [G., Gao, Hu
Minimal cost of carrying sandpile X to sandpile Y

/“"—\

ARV

gorithm.

learning

. Zhu, JMLR 2021]

8
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Momentum: Robustness to Noise

(Y = | s = ().] e = 0.01

8
. 6
)
“'I\ 4
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Figure: AGD algorithm with f = (1 — /au)/(1 + 4 /au) where the noise on the gradient is ./ (0,16/;) and the objective is
quadratic function with L = 10 and ¢ = 0.01. Left: The expected suboptimality and standard deviation from mean, Right: The
histogram of f(x57) — f(xx).

- Robustness to Noise” /Noise Amplification: j ‘= lim sup —2 — [f(xk) — f*]

ksoco O
(BLUE HAS THE (WORST) LARGEST NOISE AMPLIFICATION.)

- Empirically: There 1s a trade-oit between the convergence rate and robustness.
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Heisenberg-like (Impossibility) Result

20
Let f be a quadratic with Hessian Q) , for noisy GD with 1sotropic 1.1.d. 3
(Gaussian noise we have: E 157
-
1 o
a > C
noise amplification e ed o
convergence spee SJ —es
B 5|—AG
. . . . ® Standard choice of GD
for any choice of the stepsize for which p(a) < 1 and ¢, := —trace(Q %). ® Optimal choice of GD
8 ® Standard choice of AG
o ® Optimal choice of AG . .
0.6 0.7 0.8 0.9 1
- Faster convergence —> worse lower bound for robustness. Convergence rate
- Based on computing #(a) and p(a) exactly for quadratics. Fig: Best robustness achievable for given rate

- (Given rate, we can find the best parameters for optimizing
robustness for strongly convex functions®

* [Robust Accelerated Gradient Methods for Strongly CGonvex Functions, joint work with Aybat, Fallah, Ozdaglar SIOPT 2019] 10
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Momentum: Effect on tail and the performance II

(Y l e (Y = 01 m— (Y — U()l
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Figure: AGD algorithm with f = (1 — y/apu)/(1 + 4 /au) where the noise on the gradient is /4 (0,16/;) and the objective is quadratic function
with L = 10 and ¢ = 0.01. Left: The expected suboptimality and standard deviation from mean, Right: The CDF of f(x;59) — f ().

- A stochastic dominance eftect based on the choice of parameter.
= The performance can be really bad unless the parameters are finely tuned!

= How to control the tail probabilities and deviation from mean as a function of parameters?
11
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Momentum: Effect on tail and the performance II
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Figure: AGD algorithm with f = (1 —y/au)/(1 + 4 /au) where the noise on the gradient is ./#'(0,16/;) and the objective is quadratic function
with L = 10 and p = 0.01. Left: The expected suboptimality and standard deviation from mean, Right: The histogram of f(x;5,) — f(x:).

- Next goal:
+ We want to understand the "risk", i.e. deviations from the mean.
*+ The tail of the distribution =, of the iterates {z,}.

12
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Entropic risk: Explaining tails

- Finite-horizon entropic risk at a given risk averseness 8 > 0 | Ruszczynski, 2013]:

207 0V fir
rk,GZ(‘g) = % log [E[e 502 [~ *)])

- Infinite-horizon entropic risk:

. 0 = 0 (recovers the
7,2(0) = lim sup ry ,2(0) previous setting)

k— 00

- Applying first-order Taylor expansion in 6.

0
e(0) = ELf0R) = o] + 7L ) = fx) |71 + 0(0).

A
- The Chernoil bound:

2

20
2 log(l/é)} <,

P {f (x) — f(x:) 21y 52(0)

where ¢ € (0,1) 1s the confidence level.
Entropic Risk

controls quantiles

" See the paper for definition of little-o notation.

As 0 — 0, risk
measure converges
to expected
suboptimality

Bounds on the tail
of suboptimality.

13
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Entropic value at risk (EV@R): Coherent risk measure

- T'he entropic value at risk at a confidence level £ € (0,1) s

9) 2
EV@R,_ f(x) — fx:)] = inf {r,wz(ﬁ) | g log(l/é’)}.

6>0

- Smallest lower bound on tail:

B (f(xk) — f(x:) = EV@R, _ [ f(x) —f(x*)]) < ¢, forany ¢ € (0,1],

- Some properties of EV@R [Javid, 2012]:
+ A convex coherent risk measure,

+ The tightest possible upper bound obtained from Chernofl bound for the Value at Risk (V@R)
of suboptimality,

+ An upper bound on the conditional value at risk (CV@R) of suboptimality.

14
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Entropic value at risk (EV@R): Coherent risk measure

- 'The entropic value at risk at a confidence level

Z; (O 1) - =—-VaR ------- CVaR EVaR
& (U, 1) s 4
, 267 3
EV@ RI_C[f(xk) —f(X*)] — égg I’k,az(é’) + 7 log(l/é) . -‘u‘
5 |

- Smallest lower bound on tail:

P () —fx) 2 EV@R,_([f(x) - fee)] ) <¢, for any ¢ € (0,1],

- Some properties of EV@R [Javid, 2012]:

+ A coherent risk measure,

+ The tightest possible upper bound obtained from P ‘.

Chernoff bound for the Value at Risk (V@R) of C

Suboptimality, EV@R, ,[X] CV@R,_/X], and V@R,_,[X] comparison of standard
normal distribution (taken from [Javid, 2018]).

+ An upper bound on the conditional value at risk

(CV@R) of suboptimality.

15
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Entropic value at risk (EV@R): Coherent risk measure

- The dual representation of EV@R
EV@R,_ f(x) = f(x)] = sup {Eplf(x) = f(x)]},

QEP/T]Z

where & = {0 < 7, | Dg;(Q]|7m) <log(1/{)} and Dy, (Q| | =) 1s the KL divergence between Q
and 7.

- Interpreting duality:
*+ EV(@R is a robust version of expectation.

*+ Worst-case expectation of f(x;) — f(x:) w.r.t. measures around the log(1/{) radius of 7.

16
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Our contributions*

- 'T'here are fundamental trade-otts between convergence rate and risk of suboptimality.

- Under some light tail assumption on the noise, for strongly convex optimization, we characterize

the entropic risk of the suboptimality of

TMM.

- We obtain finite-time performance bounds on the probability, P{f(x;) — f(x:) > a} for any a > 0 as

a function of parameters.

- We study EV@R of the suboptimality which is a coherent risk measure capturing the deviations

from the suboptimality.

- We propose a framework which systematically trade-offs the EV@R of suboptimality with the

convergence rate to stationarity which a

lows us to obtain improved tail behavior for TMM.

*[Can, Gurbuzbalaban, Submitted, 2022].

17
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TMM: Quadrative objectives

- Suppose f is convex quadratic with Hessian Q and w,, ; admits the Assumption 2':

Assumption 2: For each k € N, w,,;, = VA(y,) — Vf(y,) is distributed according to isotropic Gaussian
distribution, #(0,6°I)) for some ¢* > 0, and it is independent from the filtration &, generated by {xj}]’.‘zo.

There exists C;, = O(k) we characterized explicitly such that

IE[z] = z:ll < Cep(Ap)lzg = 2:ll,

Lic] +%\/ci2 +4d, ifc?+4d >0,
where p(Ay) ;= max {p;} for p, = for ¢;= (1 +p) — a(l +y)A(0),

ie{l,...d} J1d:], otherwise,

d. = — (f — ayA(Q)), and 1.(Q) 1s the i-th largest eigenvalue ot the Hessian Q.

- Existing convergence results have been asymptotic [Gitman et al.; 2019].

"We made the Assumption 2 for simplicity and our results can be extended to sub-Gaussian noise. 18
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TMM: Quadrative objectives

- Suppose f 1s convex quadratic with Hessian Q and w;, ; admits the Assumption 2,

PROPOSITION 2
T'he finite-horizon risk measure 1s finite 1f and only 1t the parameters belong to

F, = {(a,ﬁ, v) ‘ lc;| < |1—-d| &0 < 2i€r{111ind} {u}, Vi e {1,..,d}}, (O-feasible set)

1+ d)[(1 — d)* — c?

_ i
where u, = T Then (a, p,y) also belong to

cS)q 1= {(a, 0,7) | pAp) <1 }, (stable set)

and finite-horizon entropic risk linearly converges to infinite-horizon entropic risk, 1.e.

| 7. 2(0) — ra(0) | < O(Clp(Ap)™ P + Clp(Ap)* ") forallk > 1.7

" 0(.) hides the constants depending on initialization. 19
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Further discussion on 7 ,and §_

Sq f0.25_}?1_f2

- For all (a, p,y) € F,,

IEDG] = x|l = 0,

- Particularly;

F9gC Sy,
- with the property that
0>0

0.5 1 1.5
a

Figure: Feasible set vs stable set for
f(a,b) = a* + 0.1b*> wherea,b € Rand 6> = 1.
20
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EV@R of TMM on quadratic objectives

- Suppose f 1s convex quadratic with Hessian Q and w;, ; admits the Assumption 2,

Theorem 3

2 d

o v,
I ,P,v) € F,, weh (0) = loo( 1 .
or (a, f,7) g9, we have 7 .(0) 3 igl g( 2ui>

Moreover let x_, be distributed according to stationary distribution of {x,}, then

2 _
_ o
EV@R)_[fi) = foe)] < EY_(a. B,7) = o= | ~d log (1 = 6) +2log(1/)
W20 L _
o Myrall —dlog(1 — 6) + 2log(1/7)]
< og(1l — 0g :
200(1 = p(A0)?) :
forg =20 | [y, 4|1 4= min {u)andan explicit M, under some generic assumptions .
d log(1/¢) i€{l,..d)

" The highlighted inequality holds for ¢ + 4d; # 0, and more generic inequality holds for general choice of parameters. 21
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Convergence rate results for TMM

L

- Let x = — and define the following sets”
H
So= {0y | 9=1=u), cs>+={(19,w)|w>1&1<1932—1}, S = (&,w)|0§w<1&max{2—l, : }§&<1
W w1+ k(1 —y)
) o Ja—os | [ - - - 1 -0’
$1=1@lv#l 1_\/z<<1—w> T wiwe S(“x(l—w))

- Consider TMM with parameters:

| — \/19%,1,,/,! Tl {L(ll—_'ij) L f@peds, =E_usS)nS,
Py = 1 1 — \/ : and g, = WPy, foray,, € 1 |
gy YH 0 (3 N CAT SRS

, (D)

- Theorem: MM without noise, with parameters (@ . Py, 75,,) € .U Sy converges linearly at a rate

pg,l// — 1 — \/19@9,1/]/4.

1
" 'With the convention that max{2 — —, } = 22
0 1+« 1+«

1 1
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Reparametrizing TMM parameters

4 p,g,y,/ P

3.5

- 'The FIRST reparametrization of '1'MM with respect to two

free variables.

1.35
3

1.3
r 8-

- Right figure: The regiona=ay,, w=y/flor (J,y) € S,

1.25

Ply ,
where L =1, u = 0.1, x € R, and the noise on the gradient is L2
additive 4(0,1,,) and the comparison of rate pﬁaw with ” .
accelerated convergence rate pf = 1 —4/1/k. 1 .
- [y = 1], recovers AGD: =~ [y = 0] recovers HB:
| — . /an ) -9 | si-9| | d=9)
f=y= for a € (0,—]. “= =1 " I- 9 |
1 +4/au L i 1L _

andy =0ford € . 1) .
K+ 1
23
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Expected suboptimality of TMMonfec § /I;(Rd)

The TMM on the objective f € & ﬁ( R?%) where the gradient noise admits Assumption 2 and the

-
-

parameters are chosen as given 1n (1) satisfies

0‘19,1/1(1‘0‘19,1// + 9) ) 2

= _ 2k
£ = fx) < O3 + ( =)

where pg,w =1 - \/&a&w,u < 1.

- Theorem 5 implies the following convergence rates for other first order methods:

1 —y/au . _ 90 — 9) —1_8

*AGDZ,O§W=,0§=1— /—aﬂ whereﬂ=A \/7 *HB_.pg’O—l—\/_ P where_a— A
v = |1 \/'9(1“9) ! \/(1"9) and y = 0 for 8 € [——,1)
for a € (0,1/L], ﬂ___ Koo __ k8 |’ r=00 k+1 7

24
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Entropic risk of TMMonfe & /I;([R%d)

Forfe & ﬁ(le), assume the noise obeys Assumption 2. T'hen for 6 < 6;, we have

azda&w(& - a&wL)
(1-p3,)Q2—0ay,(9+ag,L))

where (g, By ¥s,,) 18 chosen according to (1) and py , € (0,1)". Consequently;

I’kﬁz(ﬁ) <

- O(Py,,):

azd(x&w(& + a&wL)
(1 -p3,)2—0ay,(8 +ag, L))

7’62(9) <

" We provide the explicit definitions of 6% and p 9., 10 the paper, and O(.) hides the terms that depends on imitialization 25



RUTGERS

Business School
Newark and New Brunswick

EV@wWR of TMMonfe § /l;(le)

Theorem 6 (Informal)

Consider the noisy TMM to minimize the objective f & cS’ﬁ([Rd) under the setting of Proposition b.
Let ¢ € (0,1) be fixed. Set 6, = 0 and define

2
aza&w(zﬁl + a&wL) d .
; (\/ 52 log<1/c>> ifE<g,

o’day (9 + ay. L) 2 :
— v | 2‘; log(1/7), otherwise,
(1 = pg,)2 = O0sa9, (8 + ay,, L)) 0,

E_vl—é’(tga l//) —

for some py, € (0,1) and §, we explicitly provide, then EV@R admits the bound

EV@R,_ [ f(x) = fx)] < E;_ 8, ) + O((Dy,)")

" We provide the explicit definitions of 5 9., 10 the paper, and O(.) hides the terms that depends on imitialization. 26
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Tail bounds for TMMonfe & /I;(Rd)

- Theorem 6 implies

0 Oday (0 + ay,,L) }

p { fOq) = flx) 2 tg} < exp {TGZP@,W% T - P52 = Oag (8 + ag,, L))

- where 7', depends on initialization”.

" We give the explicit form of 7', in the paper. 27
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Experiments: Risk-averse TMM on quadratic objectives

- (Consider the quadratic objective:

1
fx) = ExTQx +bx +2.5]|x||%,

1

~/

1012

where b = b for b =[1,...,1]1 € R', O = Diag,_, ,,(i*), and variance of the noise is 6* = 1.

- Parameters (o, fj,

,7,) of risk-averse TMM (RA-TMM): Solve

(a ’ ﬂqa }’q) — argmin E?_C(aa ﬁa }/)
(a.p,r)ES,

pa, B,7)
P

S.t. S (1 + 6)9

2
using grid-search, where p, . = 1 N , ¢ = 0.95 confidence level, and € = 0.25.
3k + 1

- lor risk-averse AGD (RA-AGD), we added the constraint = y to the problem above.

28
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Experiments: Risk-averse TMM on quadratic objectives

- GD = AGD -—RA-AGD =—RA-TMM

x®) - fx)))

log(E[f(

0 50 100 150 200 250 300 0 0.02 0.04 0.06 0.08 0.1

. @y _ |
Iterations J(x350) — S(x)

Figure: (Left) The expected suboptimality versus iterations for GD, AGD, RA-AGD and RA-TMM. (Right) The cumulative

distribution of the suboptimality of the last iterates for GD, AGD, RA-AGD and RA-TMM after k = 300 iterations on the
quadratic loss function.

— — 50
- We plot the average (fi,.. ., f3y0) where 7, := %Z fa®) - fx) over the samples (x0)%,.
i=1

) 1/2

. o . —_ - all
- We highlight the region between (f, +6/,.. ., f300 £ 6}, ) where ¢/ = (%Z fD) = fx) |2
=1

29
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Experiments: Risk-averse TMM on quadratic objectives

- GD = AGD -—RA-AGD =—RA-TMM

x®) - fx)))

log(E[f(

|
»

0 0 100 150 200 250 0 0 0.02 0.04 0.06 0.08 0.1
Iterations S0 ) — f(xs)

Figure: (Left) The expected suboptimality versus iterations for GD, AGD, RA-AGD and RA-TMM. (Right) The cumulative

distribution of the suboptimality of the last iterates for GD, AGD, RA-AGD and RA-TMM after k = 300 iterations on
quadratic loss function.

- Rusk-averse algorithms trades convergence rate with entropic risk.

- 'The distribution of {f(x3q9) — f(x+)} of risk-averse algorithms
stochastically dominates the one of standard algorithms

30
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Experiments: Risk-averse TMM on logistic regression

- We design risk-averse TMM (RA-TMM) for logistic loss:

N

1 ] < 1
fo = )~ i) =— > log(1 + exp{=y,X[0}) + Il
i=1 =1

where X; € R'% is the feature vector and y; € {—1,1} is the label of i-th sample, with d = 100, N = 1000".
- Parameters (ay, .. By. s ¥9..) Of RA-TMM: Solve

(19*9 l//*) :

argmin FE,_ A3, )
Jwed Ud,

0
P,
.t —2

P < +e),

using grid-search, where pz =1 —1/1/x, £ = 0.95, and € = 0.25.
- lor rnisk-averse AGD (RA-AGD), we added the constraint # = y to the problem above.

" See the paper for further details on the generation of synthetic data X and y. 31
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Experiments: Risk-averse TMM on logistic regression

==GD = AGD =—RA-AGD == RA-TMM

1
4
VY 3 8
~
R
T 6
I
A
e 1 i A
% Y e T 4
| —
%o e A et D) - AGD
—
-1 — RA'AGD
— - RA-TMM
0 100 200 300 400 500 600 0 0.5 1 1.5 2 2.5 3 3.5

Figure: (Left) The expected suboptimality versus iterations for GD, AGD, RA-AGD and RA-TMM. (Right) The cumulative
distribution of the suboptimality of the last iterates for GD, AGD, RA-AGD and RA-TMM after k = 600 iterations on logistic
regression where the noise is 4 (0,1).

) ) ) B i
- We plot the average (fi, ..., f3) Where f, := %Z f(x?) — fx.) over the samples {xlg )}?21.
i=1

50
- We highlight the region between (f, 6/, .... fgoo £ 6/ ) where o/ := (% 3 1AED) = fon) )",
i=1

32
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Experiments: Risk-averse TMM on logistic regression

==GD = AGD =—RA-AGD == RA-TMM

8
VY
~
R
$ 6
AN
S 4
| —
%o 2 - AGD
—
- RA-AGD
0 - RA-TMM
0 100 200 300 400 500 600 0 0.5 1 1.5 2 2.5 3 3.5

Figure: (Left) The expected suboptimality versus iterations for GD, AGD, RA-AGD and RA-TMM. (Right) The cumulative
distribution of the suboptimality of the last iterates for GD, AGD, RA-AGD and RA-TMM after k = 600 iterations on logistic
regression where the noise is 4 (0,1).

- QOur risk-averse TMM algorithms trade convergence rate with entropic risk.

- 'T'he distribution of {f(x¢,,) — f(x:)} of risk-averse algorithms stochastically

dominates that of GD/AGD with standard parameters.
33
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Saddle point problems

Empirical risk minimization (ERM) Distributionally robust ERM
N N
min E[ f(x)] = min Z ! £(x), min sup E,[f(x)] = min max Z(x,y) := Z YVifi),
x€RY x€RY 4 1 N Y€R? e g xeR‘yeP, , i1
1= —
where N 1s the sample size. where & 1s an uncertainty set around empirical dist. and

Prn={yeRY:yT1 =1,y >0, Dg;(y||1/N) < r/N}.
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Saddle point problems

Empirical risk minimization (ERM) Distributionally robust ERM

N
1 — —
min [E[ f(x)] = min Z — f(x), # )fclelgg glelg Eolf(0)] = ;?elﬁq?f yrélax ZL(x,y) = Z v, fi(x),
x€R? xeR? i N

where & 1s an uncertainty set around empirical dist. and
where N 1s the sample size. Pon={yeRY:y"1=1,y>0, Dg;(y|I1/N) < p/N}.

Strongly convex strongly concave (SGSCU) saddle point (SP) problem:

min max Z£(x,y),
yER% yEIRd

where £ 1s smooth and strongly convex in x and strongly concave 1n y.

SCSC SP arise 1n
+ Robust training of ML, models, + Designing fair classifiers [Nouiehed, 2019],

+ Robust optimization, + Constrained optimization (via Lagrangian duality).
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Stochastic accelerated primal and dual algorithm

- The stochastic accelerated primal dual algorithm (SAPD)" [Zhang, Aybat, Gurbuzbalaban, 2021]
gy = (1 +0) vy<g(xka Vi) — vafz(xk_p)’k_ﬂ,
Yig1 = Vi T 04y,
X1 = X = TV L Va1,

- Pareto-optimal parameter design trading rate with robustness [Zhang, Aybat, Gurbuzbalaban, 2021

Assumption 3: Let {x;, y, | be SAPD iterates, then gradient estimates satisfy
_[vyf(xka yk) — Vyf(xka yk) ‘ Xk yk] = 0 and _[vxf(-xka yk) - fo(xka yk) | Xk yk] — O,

. vyfand V. fare independent from each other,

. 30'(p) > 0 s.t. ‘[|Wyf(xka Vi) — Vyf(xk’ VOllP | X% vl < 0'5,) & ‘[\fo(xka Vi) = VSO YOIP | Xyl < 08?)'17 € (2,34}

+ V,f—V,fand V, f— V| fare stationary, and independent from the past.

"With a slight abuse of notation, we use @ as the algorithm parameter to be consistent with [Zhang & Aybat. 2019] 36



RUTGERS

Business School
Newark and New Brunswick

Variance-Reduced SAPD (VR-SAPD)

- Let & be SCGSC tunction of SP problem with solution (x, y-).

- Introduce 5159) = [(xlge))T, (ylge))T, (x]@ ), (y,f)l)T]T, where [(xlge))T, ()/IEH))T]T are generated by SAPD with parameters:

1
1-0 1-0 n .
T, = , Oy = .0 €[0,1) for some 8 € (0,1)".
Py 0

Theorem (informal) [Can, Aybat, Gurbuzbalaban, 2022]
Under Assumption 3 when variance 0(22) is “small enough”, the stationary distribution exists'" and we have
lim E[£7] = &+ (1 - (VP Z) (VO ZM,) + 6((1 - 0)°7), (2)
k— o0

where V® Z. is the Hessian, V¥ Z., third-order tensor appears in Taylor expansion around (x, y+), and M, is a
fixed matrix that we can characterize.

- Using Richardson-Romberg extrapolation and characterization of stationary distribution mean
(2), we introduce the variance-reduced SAPD.

" The function £ is u, strongly convex and p, strongly convcave

" Using the techniques provided in [Hairer, 2008] 37
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Our contributions [Can, Aybat, Gurbuzbalaban, 2022]

N 1 & R A
- Let cfl(f) = Z cflg@), the VR-SAPD calculates the sequence {2&¢ — 5229_1)} for 8, (20 — 1) € [6,1):
i=1

VR - SAPD SAPD
E[287 — E27D] = £+ 6((1 — 0)%) [ lim E[£7] = &+ 6((1 - 0)) + O((1 — 6)*?)

k— 00
s S-OGDA s SMP s SAPD s VR-SAPD mgpem S-OGDA wessm SMP s SAPD s VR-SAPD mgpm S-OGDA mm SMP s SAPD s VR-SAPD
| 100 C 1
15 5 10
: [
N* N’ -1 N
1 1 1 0 :— 1 ¥
N 1072 N : \ N 107
< s | <
-k: ¥ N B N
| | 1
N N 107 N
= 0" » -
. \ - i
"‘ o Ao A A A..J'
-3 L _
10k 107 ] 10 F
C i | | | i | | | | [ i i | | | | i | | 1 o 1 1 l | | | | | |
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Number of iterations: k Number of iterations: k Number of iterations: k

Figure: Comparison of S-OGDA, SMP, SAPD, and VR-SAPD on MNIST, DryBean, and Arcene (from left to right) on empirical DRO problem in terms of
the relative expected distance squared E[||z, — z«||*1/lzg — z+/|*.
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Summary

"More risk, more (expected) reward” , Folklore

- 'There are fundamental trade-ofts (rate vs robustness to noise/risk) when designing a first-order algorithm.
*+ Heisenbere-like impossibility results.
*+ First-time rate/risk results for Triple Momentum Methods (improved heavy-ball analysis)
+ Similar trade-offs for min-max optimization.
- Introduced “Risk Averse Momentum Methods”
*+ On the Pareto-optimal curve trading rate with risk/robustness to noise.
*+ Results in better tail behavior for suboptimality.
- We obtain stronger guarantees (conv. rate to the stationary distribution)
*+ Wasserstein distances for translating deterministic convergence analysis to the stochastic case.

+ This can be used to debias the stationary distribution/improve the performance.
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'Thank you
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