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- Leading computational approach for large-scale optimization and machine learning.  

- Simplest algorithm: Gradient descent (GD): 

First-Order Deterministic Optimization I

5

xk+1 = xk − α∇f(xk)

- When f  is -strongly convex and -smooth ( ), linear rate  achieved: 

                           

μ L f ∈ 𝒮L
μ(ℝd) ρGD

α = ᾱ :=
2

L + μ
⟹ ρGD = 1 −

2
κ + 1

with κ =
L
μ

.



- Accelerated Gradient Descent (AGD): [Nesterov, 1983] 
✦ Averages last two iterates for dampening oscillations. 
✦ Faster than gradient descent by tuning the momentum parameter . β

First-Order Deterministic Optimization II

5

xk+1 = xk + β(xk − xk−1) − α∇f(yk),
yk+1 = xk + β(xk − xk−1),

- When f  is -strongly convex and -smooth ( ), accelerated linear rate : 

                                                 

                                                More general     rate        [Hu, Lessard, ICML 2019]

μ L f ∈ 𝒮L
μ(ℝd) ρacc

α =
1
L

, β =
κ − 1

κ + 1
⟹ ρacc = 1 −

1

κ
.

α, β ⟹ ρ(α, β)

Momentum



- Consider 

 

where  is compact and  is -strongly convex and -smooth ( ).

min
x∈𝒳

f(x),

𝒳 ⊂ ℝd f(x) μ L f ∈ 𝒮L
μ(ℝd)

Stochastic Optimization
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- In many settings, gradients contain random noise: 
✦ Stochastic optimization or statistical learning setting:   

‣ Example: Empirical risk minimization, logistic regression, linear regression. 
✦ Privacy-preserving empirical risk minimization.

f(x) = 𝔼ω∼PF(x, ω)

Assumption 1: We have only access to stochastic (noisy) estimate, , of  the gradient , at 
the point  satisfying 

  &    for some .              ( )

∇̃f(x) ∇f(x)
x ∈ ℝd

𝔼[ ∇̃f(x) − ∇f(x) |x] = 0 𝔼[∥∇̃f(x) − ∇f(x)∥2 | x] ≤ σ2 σ > 0 Lp



- Unconstrained case ( ) 

- Triple momentum method (TMM): 

   

- TMM is studied in [Hu & Lessard, 2017],[Scoy et al., 2018],[Cyrus et al., 2018]  for deterministic 
optimization (fastest among deterministic first order algs.)

𝒳 = ℝd

xk+1 = xk + β(xk − xk−1) − α ∇̃f(yk),
yk+1 = xk + γ(xk − xk−1),

Triple momentum method  (Generalized Momentum Methods)
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More control ! 

- TMM covers popular first order methods:  
✦ [ ]: Gradient descent (GD), 

.  
✦ [ ]: Heavy-ball method (HB),  

.

γ = β = 0

xk+1 = xk − α ∇̃f(yk)

γ = 0

xk+1 = xk + β(xk − xk−1) − α ∇̃f(xk)

✦ [ ]: Nesterov’s accelerated gradient 
descent (AGD), 

 

γ = β

xk+1 = xk + β(xk − xk−1) − α ∇̃f(yk),
yk+1 = xk + β(xk − xk−1) .



- Momentum methods are sensitive to persistent noise in the gradients [d’Aspremont, 2008],
[Devolder, 2013], may even diverge[Flammiron & Bach, 2015].

Momentum: Sensivity to noise
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lo
g(

f(
x k
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x *
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Figure: Standard AGD with  and  on quadratic objective under the various noise levels:  (left) and  
(right)

α = 1/L β = (1 − 1/κ)/(1 + 1/κ) σ = 0 σ ≫ 1

Stochastic gradientsDeterministic gradients



- AGD with :β =
1 − αμ

1 + αμ

Momentum: Effect of  noise
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(b)  Fast but inaccurate  

(high variance/bias for suboptimality)

α =
1
L

(a)   Slow but accurate  
(low variance/bias for suboptimality)

α ≈ 0

Noise Distribution Noise Distribution
Stationary 
Distribution

Stationary 
Distribution

Slow Fast



- Input noise vs equilibrium distribution for AGD with ,β =
1 − αμ

1 + αμ

Momentum: Effect of  noise
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(b) α =
1
L

(a) α ≈ 0

(c) α =
0.1
L

Theorem [Can, Zhu, M.G; ICML 2019]

Under some technical assumptions on the noise, the distribution  of  AGD iterates  converge linearly with 
rate   w.r.t. 1-Wasserstein distance where  is the rate of  the (deterministic) accelerated GD algorithm.

πk {zk}
ρ(α, β) ρ(α, β)

Wasserstein distance btw X and Y:  
Minimal cost of  carrying sandpile X to sandpile Y

Re-usable proof  technique for Bayesian learning 
with Langevin algorithms [G., Gao, Hu. Zhu, JMLR 2021]



- ``Robustness to Noise” /Noise Amplification:                     
(BLUE  HAS THE (WORST) LARGEST NOISE AMPLIFICATION.) 

- Empirically: There is a trade-off  between the convergence rate and robustness.

𝒥 := lim sup
k→∞

1
σ2

𝔼[ f(xk) − f*]

Momentum: Robustness to Noise
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Figure: AGD algorithm with  where the noise on the gradient is  and the objective is 
quadratic function with  and . Left: The expected suboptimality and standard deviation from mean, Right: The 
histogram of . 

β = (1 − αμ)/(1 + αμ) 𝒩(0,16I3)
L = 10 μ = 0.01

f(x150) − f(x*)

 
ℙ

{f
(x

15
0)

−
f(

x *
)≥

t}

t Iteration

 
f(

x k
)−

f(
x *

)



Heisenberg-like (Impossibility) Result
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Proposition*
Let  be a quadratic with Hessian Q, for noisy GD with isotropic i.i.d. 
Gaussian noise we have: 

       

for any choice of  the stepsize for which  and .

f

𝒥(α)
⏟

noise amplification

⋅
1

1 − ρ2(α)

convergence speed

≥ cf

ρ(α) < 1 cf :=
1
8

trace(Q−2)

- Faster convergence  worse lower bound for robustness. 

- Based on computing  and  exactly for quadratics. 

- Given rate, we can find the best parameters for optimizing 
robustness for strongly convex functions*  

⟹

𝒥(α) ρ(α) Fig:  Best robustness achievable for given rate

* [Robust Accelerated Gradient Methods for Strongly Convex Functions, joint work with Aybat, Fallah, Ozdaglar SIOPT 2019]

(𝒥
)



- A stochastic dominance effect based on the choice of  parameter. 

- The performance can be really bad unless the parameters are finely tuned! 

- How to control the tail probabilities and deviation from mean as a function of  parameters?

Momentum: Effect on tail and the performance II
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Figure: AGD algorithm with  where the noise on the gradient is  and the objective is quadratic function 
with  and . Left: The expected suboptimality and standard deviation from mean, Right: The CDF of . 

β = (1 − αμ)/(1 + αμ) 𝒩(0,16I3)
L = 10 μ = 0.01 f(x150) − f(x*)
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Momentum: Effect on tail and the performance II
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- Next goal: 
✦ We want to understand the "risk", i.e. deviations from the mean.  
✦ The tail of  the distribution  of  the iterates . πk {zk}

Figure: AGD algorithm with  where the noise on the gradient is  and the objective is quadratic function 
with  and . Left: The expected suboptimality and standard deviation from mean, Right: The histogram of . 

β = (1 − αμ)/(1 + αμ) 𝒩(0,16I3)
L = 10 μ = 0.01 f(x150) − f(x*)
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- Applying first-order Taylor expansion in : 

.  

θ

rk,σ2(θ) = 𝔼[ f(xk) − f(x*)] +
θ

4σ2
𝔼[ | f(xk) − f(x*) |2 ] + o(θ) †

- Finite-horizon entropic risk at a given risk averseness  [Ruszczynski, 2013]: 

, 

- Infinite-horizon entropic risk: 

                                        

θ > 0

rk,σ2(θ) =
2σ2

θ
log 𝔼[e

θ
2σ2 f(xk)−f(x*)]

rσ2(θ) = lim sup
k→∞

rk,σ2(θ)

Entropic risk: Explaining tails
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As , risk 
measure converges 
to expected 
suboptimality

θ → 0

 See the paper for definition of  little-o notation. †

Bounds on the tail 
of  suboptimality.

- The Chernoff  bound:  

  ,                                            

where  is the confidence level. 

ℙ {f(xk) − f(x*) ≥ rk,σ2(θ) +
2σ2

θ
log(1/ζ)} ≤ ζ

ζ ∈ (0,1)

 (recovers the 
previous setting)
θ = 0

Entropic Risk 
controls quantiles 



- The entropic value at risk at a confidence level  : 

 . 

- Smallest lower bound on tail: 

 for any ,

ζ ∈ (0,1)

EV@R1−ζ[ f(xk) − f(x*)] = inf
θ>0 {rk,σ2(θ) +

2σ2

θ
log(1/ζ)}

ℙ (f(xk) − f(x*) ≥ EV@R1−ζ[ f(xk) − f(x*)]) ≤ ζ, ζ ∈ (0,1]

Entropic value at risk (EV@R): Coherent risk measure
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- Some properties of  EV@R [Javid, 2012]: 
✦ A convex coherent risk measure, 
✦ The tightest possible upper bound obtained from Chernoff  bound for the Value at Risk (V@R) 

of  suboptimality, 
✦ An upper bound on the conditional value at risk (CV@R) of  suboptimality. 



- The entropic value at risk at a confidence level 
 : 

 . 

- Smallest lower bound on tail: 

 for any , 

- Some properties of  EV@R [Javid, 2012]: 
✦ A coherent risk measure,  
✦ The tightest possible upper bound obtained from 

Chernoff  bound for the Value at Risk (V@R) of  
suboptimality, 

✦ An upper bound on the conditional value at risk 
(CV@R) of  suboptimality.

ζ ∈ (0,1)

EV@R1−ζ[ f(xk) − f(x*)] = inf
θ>0 {rk,σ2(θ) +

2σ2

θ
log(1/ζ)}

ℙ (f(xk) − f(x*) ≥ EV@R1−ζ[ f(xk) − f(x*)]) ≤ ζ, ζ ∈ (0,1]

Entropic value at risk (EV@R): Coherent risk measure
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,[X] [X], and [X] comparison of  standard 
normal distribution (taken from [Javid, 2018]).
EV@R1−ζ CV@R1−ζ V@R1−ζ

ζ



- The dual representation of  EV@R 

,   

where  and  is the KL divergence between  
and .

EV@R1−ζ[ f(xk) − f(x*)] = sup
Q∈ℱπk

{𝔼Q[ f(x) − f(x*)]}

ℱπk
:= {Q ≪ πk | DKL(Q | |πk) < log(1/ζ)} DKL(Q | |πk) Q

πk

Entropic value at risk (EV@R): Coherent risk measure
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- Interpreting duality: 
✦ EV@R is a robust version of  expectation.  
✦ Worst-case expectation of   w.r.t. measures around the  radius of  .f(xk) − f(x*) log(1/ζ) πk



- There are fundamental trade-offs between convergence rate and risk of  suboptimality.  

- Under some light tail assumption on the noise, for strongly convex optimization, we characterize 
the entropic risk of  the suboptimality of  TMM. 

- We obtain finite-time performance bounds on the probability,  for any  as 
a function of  parameters. 

- We study EV@R of  the suboptimality which is a coherent risk measure capturing the deviations 
from the suboptimality.  

- We propose a framework which systematically trade-offs the EV@R of  suboptimality with the 
convergence rate to stationarity which allows us to obtain improved tail behavior for TMM.

ℙ{f(xk) − f(x*) ≥ a} a > 0

Our contributions*

17*[Can, Gurbuzbalaban, Submitted, 2022].



TMM: Quadrative objectives
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- Existing convergence results have been asymptotic [Gitman et al., 2019].

- Suppose   is convex quadratic with Hessian  and  admits the Assumption 2 :f Q wk+1
†

Assumption 2: For each ,  is distributed according to isotropic Gaussian 
distribution,   for some , and it is independent from the filtration  generated by .

k ∈ ℕ wk+1 = ∇̃f(yk) − ∇f(yk)
𝒩(0,σ2Id) σ2 > 0 ℱk {xj}k

j=0

We made the Assumption 2 for simplicity and our results can be extended to sub-Gaussian noise.†

Proposition 1
There exists  we characterized explicitly such that 

                                , 

where  for       for ,

, and  is the -th largest eigenvalue of  the Hessian . 

Ck = 𝒪(k)

∥𝔼[zk] − z*∥ ≤ Ckρ(AQ)k−1∥z0 − z*∥

ρ(AQ) := max
i∈{1,..,d}

{ρi} ρi =
1
2 |ci | + 1

2 c2
i + 4di, if c2

i + 4di > 0,

|di | , otherwise,
ci = (1 + β) − α(1 + γ)λi(Q)

di = − (β − αγλi(Q)) λi(Q) i Q



TMM: Quadrative objectives
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- Suppose   is convex quadratic with Hessian  and  admits the Assumption 2,f Q wk+1

  hides the constants depending on initialization.† 𝒪( . )

The finite-horizon risk measure is finite if  and only if  the parameters belong to                  

,                           ( -feasible set) 

where . Then  also belong to                               

,                                                  (stable set) 

and finite-horizon entropic risk linearly converges to infinite-horizon entropic risk, i.e. 

     for all .

ℱθ = {(α, β, γ) |ci | < |1 − di | & θ < 2 min
i∈{1,..,d}

{ui}, ∀i ∈ {1,..,d}} θ

ui =
(1 + di)[(1 − di)2 − c2

i ]
λi(Q)(1 − di)α2

(α, β, γ)

𝒮q := {(α, β, γ) | ρ(AQ) < 1}

|rk,σ2(θ) − rσ2(θ) | ≤ 𝒪(C2
k ρ(AQ)2(k−1) + C4

k ρ(AQ)4(k−1)) k ≥ 1 †

PROPOSITION 2



- For all ,  

, 

- Particularly, 

, 
- with the property that 

.

(α, β, γ) ∈ ℱθ

∥𝔼[xk] − x*∥ → 0

ℱθ ⊂ 𝒮q

∪
θ>0

ℱθ = 𝒮q

Further discussion on  and ℱθ 𝒮q
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Figure: Feasible set vs stable set for 
 where  and . f(a, b) = a2 + 0.1b2 a, b ∈ ℝ σ2 = 1



Theorem 3

For , we have .  

Moreover let  be distributed according to stationary distribution of  , then   

  

for ,  and an explicit  under some generic assumptions .

(α, β, γ) ∈ ℱθ rσ2(θ) = −
σ2

θ

d

∑
i=1

log (1 −
θ

2ui )
x∞ {xk}

EV@R1−ζ[ f(x∞) − f(x*)] ≤ Ēq
1−ζ(α, β, γ) :=

σ2

θ02ū [−d log (1 − θ0) + 2 log(1/ζ)]
≤

M0σ2α2L
2θ0(1 − ρ(AQ)2) [−d log(1 − θ0) + 2 log(1/ζ)],

θ0 =
log(1/ζ)

d
1 +

2d
log(1/ζ)

− 1 < 1 ū = min
i∈{1,..,d}

{ui} M0
†

EV@R of  TMM on quadratic objectives
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- Suppose   is convex quadratic with Hessian  and  admits the Assumption 2,f Q wk+1

 The highlighted inequality holds for , and more generic inequality holds for general choice of  parameters.† c2
i + 4di ≠ 0



- Let  and define the following sets   

 

- Consider TMM with parameters:   

 and   for ,    (1)

κ =
L
μ

†

𝒮0 = {(ϑ, ψ) ∣ ϑ = 1 = ψ}, 𝒮+ = {(ϑ, ψ) ∣ ψ > 1 & 1 < ϑ ≤ 2 −
1
ψ }, 𝒮− = {(ϑ, ψ) ∣ 0 ≤ ψ < 1 & max {2 −

1
ψ

,
1

1 + κ(1 − ψ) } ≤ ϑ < 1}
𝒮1 = (ϑ, ψ) ψ ≠ 1, 1 −

(1 − ϑ)ϑ
κ(1 − ψ) [1 −

(1 − ϑ)(μψ2 − L(1 − ψ)2)
L(1 − ψ)ϑ ] ≤ (1 −

(1 − ϑ)ψ
κ(1 − ψ) )

2

.

βϑ,ψ =
1 − ϑαϑ,ψ μ

1 − αϑ,ψψμ [1 −
αϑ,ψ μ

ϑ ] γϑ,ψ = ψβϑ,ψ αϑ,ψ ∈
{ 1 − ϑ

L(1 − ψ) },  if (ϑ, ψ) ∈ 𝒮c := (𝒮− ∪ 𝒮+) ∩ 𝒮1

(0, 1
L ],  if (ϑ, ψ) ∈ 𝒮0

Convergence rate results for TMM

22 With the convention that † max{2 −
1
0

,
1

1 + κ
} =

1
1 + κ

- Theorem: TMM without noise, with parameters  converges linearly at a rate  

.

(αϑ,ψ, βϑ,ψ, γϑ,ψ) ∈ 𝒮c ∪ 𝒮0

ρ2
ϑ,ψ = 1 − ϑαϑ,ψ μ



Reparametrizing TMM parameters
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- , recovers AGD: 

 for 

[ψ = 1]

β = γ =
1 − αμ

1 + αμ
α ∈ (0,

1
L

] .

-  recovers HB:  

, ,  

and  for 

[ψ = 0]

α =
1 − ϑ

L
β = [1 −

ϑ(1 − ϑ)
κ ] [1 −

(1 − ϑ)
κϑ ]

γ = 0 ϑ ∈ [
κ

κ + 1
,1) .

- The FIRST reparametrization of  TMM with respect to two 
free variables. 

- Right figure:  The region ,  for  
where , , , and the noise on the gradient is 
additive  and the comparison of  rate  with 
accelerated convergence rate .  

α = αϑ,ψ ψ = γ/β (ϑ, ψ) ∈ 𝒮c
L = 1 μ = 0.1 x ∈ ℝd

𝒩(0,I10) ρ2
ϑ,ψ

ρ2
* = 1 − 1/κ



Expected suboptimality of  TMM on f ∈ 𝒮L
μ(ℝd)
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Theorem 4
The TMM on the objective  where the gradient noise admits Assumption 2 and the 
parameters are chosen as given in (1) satisfies                         

                                                                          

where . 

f ∈ 𝒮L
μ(ℝd)

𝔼[ f(xk)] − f(x*) ≤ 𝒪(ρ2k
ϑ,ψ) + (

αϑ,ψ(Lαϑ,ψ + ϑ)
2(1 − ρ2

ϑ,ψ) ) dσ2,

ρ2
ϑ,ψ = 1 − ϑαϑ,ψ μ < 1

- Theorem 5 implies the following convergence rates for other first order methods:

✦ HB:  where , 

, and  for 

ρ2
ϑ,0 = 1 −

ϑ(1 − ϑ)
κ

α =
1 − ϑ

L
β = [1 −

ϑ(1 − ϑ)
κ ] [1 −

(1 − ϑ)
κϑ ] γ = 0 ϑ ∈ [

κ
κ + 1

,1) .

✦ AGD:  where 

for ,

ρ2
ϑ,ψ = ρ2

α = 1 − αμ β =
1 − αμ

1 + αμ

α ∈ (0,1/L]



Entropic risk of  TMM on f ∈ 𝒮L
μ(ℝd)

25 We provide the explicit definitions of   and  in the paper, and  hides the terms that depends on initialization† θg
u ρ̄ϑ,ψ 𝒪( . )

For , assume the noise obeys Assumption 2. Then for , we have 

  

where  is chosen according to (1) and . Consequently,  

.

f ∈ 𝒮L
μ(ℝd) θ < θg

u

rk,σ2(θ) <
σ2dαϑ,ψ(ϑ + αϑ,ψL)

(1 − ρ̄2
ϑ,ψ)(2 − θαϑ,ψ(ϑ + αϑ,ψL))

+ 𝒪(ρ̄2k
ϑ,ψ),

(αϑ,ψ, βϑ,ψ, γϑ,ψ) ρ̄ϑ,ψ ∈ (0,1)†

rσ2(θ) ≤
σ2dαϑ,ψ(ϑ + αϑ,ψL)

(1 − ρ̄2
ϑ,ψ)(2 − θαϑ,ψ(ϑ + αϑ,ψL))

Proposition 5



Theorem 6 (Informal)

Consider the noisy TMM to minimize the objective  under the setting of  Proposition 5. 
Let  be fixed. Set  and define  

                                                       

for some  and  we explicitly provide, then EV@R admits the bound  

f ∈ 𝒮L
μ(ℝd)

φ ∈ (0,1) θφ = φθg
u

Ē1−ζ(ϑ, ψ) =

σ2αϑ,ψ(ϑ + αϑ,ψL)

2 ( d
1 − ¯̄ρϑ,ψ

+ 2 log(1/ζ))
2

,  if ζ < ζ0,

σ2dαϑ,ψ(ϑ + αϑ,ψL)

(1 − ¯̄ρϑ,ψ)(2 − θg
φαϑ,ψ(ϑ + αϑ,ψL))

+ 2σ2

θg
φ

log(1/ζ), otherwise,

¯̄ρϑ,ψ ∈ (0,1) ζ0

EV@R1−ζ[ f(xk) − f(x*)] ≤ Ē1−ζ(ϑ, ψ) + 𝒪(( ¯̄ρϑ,ψ)k)

EV@R of  TMM on f ∈ 𝒮L
μ(ℝd)

26 We provide the explicit definitions of   in the paper, and  hides the terms that depends on initialization.† ¯̄ρϑ,ψ 𝒪( . )



- Theorem 6 implies  

, 

- where  depends on initialization .

ℙ {f(xk) − f(x*) ≥ tζ} < exp { θ
2σ2

ρ̄2k
ϑ,ψ𝒱0 − tζ +

θdαϑ,ψ(ϑ + αϑ,ψL)
2(1 − ρ̄2

ϑ,ψ)(2 − θαϑ,ψ(ϑ + αϑ,ψL)) }
𝒱0

†

Tail bounds for TMM on f ∈ 𝒮L
μ(ℝd)

27 We give the explicit form of    in the paper. † 𝒱0



- Consider the quadratic objective:  

 ,   

where   for , , and variance of  the noise is . 

-  Parameters  of  risk-averse TMM (RA-TMM): Solve  

 

 using grid-search, where ,  confidence level, and .    

- For risk-averse AGD (RA-AGD), we added the constraint  to the problem above.  

f(x) =
1
2

x⊤Qx + b⊤x + 2.5∥x∥2

b =
1

∥b̃∥2
b̃ b̃ = [1,....,1] ∈ ℝ10 Q = Diagi=1,..,10(i2) σ2 = 1

(αq, βq, γq)

(αq, βq, γq) = argmin
(α,β,γ)∈𝒮q

Ēq
1−ζ(α, β, γ)

 s.t. 
ρ2(α, β, γ)

ρ2
q,*

≤ (1 + ϵ),

ρq,* = 1 −
2

3κ + 1
ζ = 0.95 ϵ = 0.25

β = γ

Experiments: Risk-averse TMM on quadratic objectives

28



Figure: (Left) The expected suboptimality versus iterations for GD, AGD, RA-AGD and RA-TMM. (Right) The cumulative 
distribution of the suboptimality of the last iterates for GD, AGD, RA-AGD and RA-TMM after  iterations on the 
quadratic loss function.

k = 300

- We plot the average  where  over the samples .  

- We highlight the region between  where .

( f̄1, . . . , f̄300) f̄k :=
1
50

50

∑
i=1

f(x(i)
k ) − f(x*) {x(i)

k }50
i=1

( f̄0 ± σ f
0, . . . , f̄300 ± σ f

300) σ f
k := ( 1

50

50

∑
i=1

| f(x(i)
k ) − f(x*) |2 )1/2

Experiments: Risk-averse TMM on quadratic objectives

29



Figure: (Left) The expected suboptimality versus iterations for GD, AGD, RA-AGD and RA-TMM. (Right) The cumulative 
distribution of the suboptimality of the last iterates for GD, AGD, RA-AGD and RA-TMM after  iterations on 
quadratic loss function.

k = 300

- Risk-averse algorithms trades convergence rate with entropic risk. 

- The distribution of   of  risk-averse algorithms 
stochastically dominates the one of  standard algorithms

{f(x300) − f(x*)}

Experiments: Risk-averse TMM on quadratic objectives
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- We design risk-averse TMM (RA-TMM) for logistic loss:  

 ,   

where  is the feature vector and  is the label of  -th sample, with , . 

- Parameters  of  RA-TMM: Solve 

 

using grid-search, where , , and . 

- For risk-averse AGD (RA-AGD), we added the constraint  to the problem above.  

f(x) =
N

∑
i=1

1
N

fi(x) :=
1
N

N

∑
i=1

log(1 + exp{−yi(X⊤
i x)}) +

1
2

∥x∥2

Xi ∈ ℝ100 yi ∈ {−1,1} i d = 100 N = 1000†

(αϑ*,ψ*
, βϑ*,ψ*

, γϑ*,ψ*
)

(ϑ*, ψ*) := argmin
(ϑ,ψ)∈𝒮c∪𝒮0

Ē1−ζ(ϑ, ψ)

 s.t. 
ρ2

ϑ,ψ

ρ2
*

≤ (1 + ϵ),

ρ2
* = 1 − 1/κ ζ = 0.95 ϵ = 0.25

β = γ

Experiments: Risk-averse TMM on logistic regression

 See the paper for further details on the generation of  synthetic data  and .† X y 31



Figure: (Left) The expected suboptimality versus iterations for GD, AGD, RA-AGD and RA-TMM. (Right) The cumulative 
distribution of the suboptimality of the last iterates for GD, AGD, RA-AGD and RA-TMM after  iterations on logistic 
regression where the noise is .

k = 600
𝒩(0,I100)

- We plot the average  where  over the samples .  

- We highlight the region between  where .

( f̄1, . . . , f̄300) f̄k :=
1
50

50

∑
i=1

f(x(i)
k ) − f(x*) {x(i)

k }50
i=1

( f̄0 ± σ f
0, . . . , f̄600 ± σ f

600) σ f
k := ( 1

50

50

∑
i=1

| f(x(i)
k ) − f(x*) |2 )1/2

Experiments: Risk-averse TMM on logistic regression
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Figure: (Left) The expected suboptimality versus iterations for GD, AGD, RA-AGD and RA-TMM. (Right) The cumulative 
distribution of the suboptimality of the last iterates for GD, AGD, RA-AGD and RA-TMM after  iterations on logistic 
regression where the noise is .

k = 600
𝒩(0,I100)

Experiments: Risk-averse TMM on logistic regression

- Our risk-averse TMM algorithms trade convergence rate with entropic risk. 

- The distribution of   of  risk-averse algorithms stochastically 
dominates that of  GD/AGD with standard parameters.

{f(x600) − f(x*)}
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Saddle point problems

Distributionally robust ERM 

, 

where  is an uncertainty set around empirical dist. and  
. 

min
x∈ℝd

sup
Q∈𝒫

𝔼Q[ f(x)] = min
x∈ℝd

max
y∈𝒫r,n

ℒ(x, y) :=
N

∑
i=1

yi fi(x)

𝒫
𝒫r,n := {y ∈ ℝN : y⊤1 = 1, y ≥ 0, DKL(y∥1/N) ≤ r/N}

Empirical risk minimization (ERM) 

, 

where  is the sample size. 

min
x∈ℝd

𝔼[ f(x)] = min
x∈ℝd

N

∑
i=1

1
N

fi(x)

N



35

Saddle point problems

- Strongly convex strongly concave (SCSC) saddle point (SP) problem: 

, 

where  is smooth and strongly convex in x and strongly concave in y. 

min
x∈ℝdx

max
y∈ℝdy

ℒ(x, y)

ℒ

Distributionally robust ERM 

, 

where  is an uncertainty set around empirical dist. and  
. 

min
x∈ℝd

sup
Q∈𝒫

𝔼Q[ f(x)] = min
x∈ℝd

max
y∈𝒫r,n

ℒ(x, y) :=
N

∑
i=1

yi fi(x)

𝒫
𝒫ρ,n := {y ∈ ℝN : y⊤1 = 1, y ≥ 0, DKL(y∥1/N ) ≤ ρ/N}

Empirical risk minimization (ERM) 

, 

where  is the sample size. 

min
x∈ℝd

𝔼[ f(x)] = min
x∈ℝd

N

∑
i=1

1
N

fi(x)

N

- SCSC SP arise in  
✦ Robust training of  ML models, 
✦ Robust optimization,

✦ Designing fair classifiers [Nouiehed, 2019],  
✦ Constrained optimization (via Lagrangian duality).



- The stochastic accelerated primal dual algorithm (SAPD)  [Zhang, Aybat, Gurbuzbalaban, 2021] 

 

†

q̃k = (1 + θ) ∇̃yℒ(xk, yk) − θ ∇̃yℒ(xk−1, yk−1),
yk+1 = yk + δq̃k,
xk+1 = xk − τ ∇̃xℒ(xk, yk+1),

Stochastic accelerated primal and dual algorithm
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Assumption 3: Let  be SAPD iterates, then gradient estimates satisfy 

•  and , 

•  and  are independent from each other, 

•  s.t.  & ,  

•  and  are stationary, and independent from the past. 

{xk, yk}
𝔼[ ∇̃y f(xk, yk) − ∇y f(xk, yk) | xk, yk] = 0 𝔼[ ∇̃x f(xk, yk) − ∇x f(xk, yk) | xk, yk] = 0

∇̃y f ∇̃x f

∃σ(p) > 0 𝔼[∥∇̃y f(xk, yk) − ∇y f(xk, yk)∥p | xk, yk] ≤ σp
(p) 𝔼[∥∇̃x f(xk, yk) − ∇x f(xk, yk)∥p | xk, yk] ≤ σp

(p) p ∈ {2,3,4}

∇̃x f − ∇x f ∇̃y f − ∇y f

With a slight abuse of  notation, we use  as the algorithm parameter to be consistent with [Zhang & Aybat. 2019]† θ

- Pareto-optimal parameter design trading rate with robustness  [Zhang, Aybat, Gurbuzbalaban, 2021] 



- Let  be SCSC function of  SP problem with solution . 

- Introduce , where  are generated by SAPD with parameters: 

   for some .

ℒ (x*, y*)

ξ(θ)
k = [(x(θ)

k )⊤, (y(θ)
k )⊤, (x(θ)

k−1)
⊤, (y(θ)

k−1)
⊤]⊤ [(x(θ)

k )⊤, (y(θ)
k )⊤]⊤

τθ =
1 − θ

μx
, δθ =

1 − θ
μyθ

, θ ∈ [ ̂θ,1) ̂θ ∈ (0,1)†

Variance-Reduced SAPD (VR-SAPD)
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Under Assumption 3 when variance  is “small enough”, the stationary distribution exists  and we have 

 ,                             (2) 

where  is the Hessian,  third-order tensor appears in Taylor expansion around , and  is a 
fixed matrix that we can characterize.

σ2
(2)

††

lim
k→∞

𝔼[ξ(θ)
k ] = ξ* + (1 − θ)(∇(2)ℒ*)−1(∇(3)ℒ*Mw) + 𝒪((1 − θ)3/2)

∇(2)ℒ* ∇(3)ℒ* (x*, y*) Mw

Theorem (informal) [Can, Aybat, Gurbuzbalaban, 2022]

- Using Richardson-Romberg extrapolation and characterization of  stationary distribution mean 
(2), we introduce the variance-reduced SAPD.

 The function  is  strongly convex and  strongly convcave 
 Using the techniques provided in [Hairer, 2008]

† ℒ μx μy
††



- Let , the VR-SAPD calculates the sequence  for :ξ̃(θ)
k =

1
k

k

∑
i=1

ξ(θ)
k {2ξ̃θ

k − ξ̃(2θ−1)
k } θ, (2θ − 1) ∈ [ ̂θ,1)

Our contributions [Can, Aybat, Gurbuzbalaban, 2022]
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VR - SAPD  

lim
k→∞

𝔼[2ξ̄(θ)
k − ξ̄(2θ−1)

k ] = ξ* + 𝒪((1 − θ)3/2)

SAPD  

lim
k→∞

𝔼[ξ(θ)
k ] = ξ* + 𝒪̄((1 − θ)) + 𝒪((1 − θ)3/2)

Figure: Comparison of S-OGDA, SMP, SAPD, and VR-SAPD on MNIST, DryBean, and Arcene (from left to right) on empirical DRO problem in terms of 
the relative expected distance squared . 𝔼[∥zk − z*∥2]/∥z0 − z*∥2



- There are fundamental trade-offs (rate vs robustness to noise/risk) when designing a first-order algorithm. 
✦ Heisenberg-like impossibility results. 
✦ First-time rate/risk results for Triple Momentum Methods (improved heavy-ball analysis) 
✦ Similar trade-offs for min-max optimization. 

- Introduced “Risk Averse Momentum Methods”  
✦ On the Pareto-optimal curve trading rate with risk/robustness to noise. 
✦ Results in better tail behavior for suboptimality. 

- We obtain stronger guarantees (conv. rate to the stationary distribution) 
✦ Wasserstein distances for translating deterministic convergence analysis to the stochastic case.  
✦ This can be used to debias the stationary distribution/improve the performance. 

Summary
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                                                          ``More risk, more (expected) reward” , Folklore
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