Optimization with
Learning-Informed
Differential Equation
Constraints

I\
: : . 1,2
AQ Michael Hintermuller EMECSC
IWeierstrass Institute for Applied Analysis School
and Stochastics (WIAS), G. Stampacchia
% 2Humboldt-Universitat zu Berlin

Joint work with Guozhi Dong and Kostas Papafitsoros May 24, 2022



Data-driven methods for model-based prediction
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Figure: Ab initio models typically used to analyze experimental data and for prediction

= Making the physics model more and more accurate is a continuous challenge.
= Artificial neural networks are efficient tools to learn physical laws from data.

= Taking advantage of ever increasing computational power and data availability.
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A general optimization workflow with learned physics

Learning-informed models as constraints in optimization
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A general optimization framework
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y = Iy (u)

subject to y =y (u), u € Cuq

Figure: Workflow of optimization with learning-informed physical constraints
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Mathematics of deep learning
and its "current state”
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Artificial neural networks (ANNSs) in brief

Key components:

= . input data

= y: output data

s WD = o (Wh! + by)
= 0 activation function

= |V} weight matrix

= b;: bias vector

Input Layer Hidden Layers OutputLayer = One hidden-layer case:
N(U) = Wlo'(Wou-i—bo)-i-bl — Y
Figure: A diagram of an artificial neural network = [V, and b; are unknowns to be fixed

Supervised learning is about solving the following generic optimization problem:

for given training data pairs (u;, y;)}_1, and W := (W)E, b= (b)),
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Universal approximation theorem’

ANNs have been very successful approximators for functions f : {2 — R", defined
on bounded {2 C R,

Theorem (function value approximation)

A standard multi-layer feedforward network with a continuous activation function
can uniformly approximate any continuous function to any degree of accuracy if and
only if its activation function is not a polynomial.

Theorem (derivative approximation)

There exists a neural network which can approximate both the function value and
the derivatives of f uniformly to any degree of accuracy if the activation function is
continuously differentiable and is not a polynomial.

'Pinkus, Approximation theory of the MLP model in neural networks. Acta Numerica, 1999.
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Activation functions of ANNs

Examples of smooth activation functions:

e*—e * 1

e Sigmoid: e.g., tansig (0(z) = =), logsig (0(2) = 1—=)), arctan
(0(z) = arctan(z)), etc.

e~

e Probability functions: e.g., softmax (;(z) = W)
J

Examples of nonsmooth activation functions:

e ReLU: Rectified Linear Unit (o(z) = max(0, 2))

Important: Choosing smooth vs. nonsmooth activation functions should respect
prior information on to be approximated object and has numerous implications in
optimization.
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Current state on ANN’s approximation

NNs approximate an objective f in different settings Examples

1. f:Q C R™ — R", with finite m and n

. o = (Generalized)
Universal approximation theorem

Regression

2. f : K C By — R", where 51 is some Banach space  « (Image)
Under-development (mostly convolutionary NNs) Classification

3. f: Q) C R"™ — By, where BB, is some Banach space = Solving (partial)
Under-development (many different methods) differential equations

4. f K C By — Bs, (By):_, can be infinite dimensional * Operator learning
Under-development (very few still)

Except for case 1, mathematical understanding of cases 2—4 still mostly in progress.

Main difficulty: Compactness condition problematic.
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Physics-informed learning® vs Learning-informed physics®

Physics-informed learning Learning-informed physics

= Physical models enter learning and = Using ANNSs to predict physical

neural networks models or their constituents

= PDE residuals are part of loss = Loss function is not necessarily PDE
function for training dependent

= Usually of type f : Q2 — By = Typically of type f : B — By

To directly learn operators between Banach spaces using ANNs has been intensively
investigated recently #°.

?Bhattacharya, Hosseini, Kovachki and Stuart, Model reduction and neural networks for parametric PDEs, ICLR,
2021.

bLu, Jin, Pang, Zhang & Karniadakis, Learning nonlinear. operators via DeepONet based on the universal
approximation theorem of operators, Nature Machine Intell., 2021.

2Rassi, Perdikaris and Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear PDEs. J. Comp. Phys. 2019.

Dong, Hintermiiller and Papafitsoros, Optimization with learning-informed differential equation constraints and its
applications, to appear in ESAIM: COCV, 2021.
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Optimization constrained by
learning-informed models
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A general framework involving physics-based models

We study the following optimization problem:

1 o
minimize =4y — al|? + —|lu 27
minimize - S|4y — gllf; + 5 llull

subjectto  e(y,u) = 0,
u € Cyy.
s A: U — Y abounded, linear operator

= e(y, u) = 0 physical model; e.g., (system of) ODEs or PDEs
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A general framework involving physics-based models

We study the following optimization problem:

1 Qa
minimize ~ | ATl(u) — gllf; + 5 |lull} = I ()

subjectto  u € Cyy.

s A: U — Y abounded, linear operator
= e(y, u) = 0 physical model; e.g., (system of) ODEs or PDEs
= Well-posedness e(y, u) = 0 leads to y = [1(u)

12/41 Learning-informed physics W i é

vvvvvvv



A general framework involving physics-based models

We study the following optimization problem:

. 1 o
minimize §HAHN<U> —gl% + 5|Iu|l?f =: In(u),

subjectto  u € Cyy.

s A: U — Y abounded, linear operator

= e(y, u) = 0 physical model; e.g., (system of) ODEs or PDEs

= Well-posedness e(y, u) = 0 leads to y = [1(u)

= ANNs for operator learning yield [1,, ~ II (possibly via different pathways)
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A general framework involving physics-based models

We study the following optimization problem:

. 1 o
minimize §HAHN(U> —gl% + 5|Iu|l?f =: In(u),

subjectto  u € Cyy.

s A: U — Y abounded, linear operator

= e(y, u) = 0 physical model; e.g., (system of) ODEs or PDEs

= Well-posedness e(y, u) = 0 leads to y = [1(u)

= ANNs for operator learning yield [1,, ~ II (possibly via different pathways)

Fundamental questions:

= Conditions for well-posedness of learned physical model and universal
approximation property of [1, ~ I1.

= Approximation properties of optimizers associated to learning-informed
models vs. those related to original physics-based models.
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Existence of solutions

Let () := Al (or Ally).

Proposition
Suppose that () is weakly-weakly sequentially closed, i.e., if u,, LR u and

Q(uy) A g, then g = Q(u). Then the optimization problem admits a solution
uel.

In the special case when C,; is a bounded set of a subspace U compactly
embedded into U, then strong-weak sequential closedness of () is sufficient to
guarantee existence of a solution.

= In many PDE models, regularity of the resp. solution helps the weak-weak
sequential closedness condition of the control-to-state map to be satisfied.

= While in imaging applications (inverse problems, more generally) regularization

A

usually plays a role similar to U.
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Convergence under operator perturbations

Let (), .= Ally;, be the reduced learning-informed operators.

Theorem
Let () and (),, forn € N be weakly sequentially closed operators, and

sup [|Q(u) — Qn(u)||lg < €,, for €,]0.

uECad

Suppose (un)neN is a sequence of minimizers associated to the optimization
problems with reduced operator ()),, for alln € N.
Then, there is the strong convergence (up to a sub-sequence)

U, = u in U, and @Qp(u,) — Q(u) in H, as n — oo,

where u is a minimizer of the original optimization problem.
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Convergence rates

Denote L and L; the Lipschitz constants associated to () and ()’, respectively,
where ()’ is the Fréchet derivative of (), and 1,, == ||Q’ — %Hz(U H)

Theorem
Under smallness of L, L1, the solutions wu,, converge to u at the following rate

lun = ully = O (Loen + | Q1) = gl[ 7 1)

Theorem (when J'(u) = 0)

Suppose the Lipschitz constant L satisfies

Li[|Q(w) = gllg < a.
If J'(u) = 0, then for sufficiently large n € N we have the following error bound

i — ally = O W 20 — guif) |

o . T »
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Case studies
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Learn control-to-state map for semilinear PDEs

We consider the following model problem:

minimize ||y — gl + Il
—||y — —||u
() Y Il T Iz@)

subjectto — Ay + f(-,y)=u in Q, Jd,y=0 on 0,
U € Cog = {v € L*(Q) : u(z) < v(z) <u(zx), forx e QY.

= { is some unknown map, e.g., modeling phase separation

= Goal is to learn the control-to-state (C2S) map I : ©u — y
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Learn control-to-state map for semilinear PDEs

We consider the following model problem:

minimize 1H 120y + Oé|| I3
—||ly — —||u
ay 217 T Il TR TRe)

subjectto — Ay +N(-,y)=u in Q, d,y=0 on 09,
U € Cog = {v € L*(Q) : u(z) < v(z) <u(zx), forx e QY.

= { is some unknown map, e.g., modeling phase separation

= Goal is to learn the control-to-state (C2S) map I : ©u — y

= Ideal: learn f through a neural network \ via f(-,y) = Ay + u

= The learning-informed PDE with component \/, induces the C2S map 11
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Assumptions on the nonlinearity

= (Regularity) f = f(x, z) : {2 x R — R is measurable in z and continuous in z.
= (Growth-rate) There is F': () x R — R sothat 0.F (-, z) = f(-, z), satisfying

|f(,Z>| §b1—|—61|2’p_1 and —f(,Z>Z+F<,Z) < b27

resulting in

F(-,2) <by+cylz|”,
for some constants by, b1, bo € R and ¢y, ¢y > 0, and for some p so that the
embedding H'(€2) C LP(2) holds.

Jo Flzy)dz
19l Lo

= (Coercivity) F' is coercive in the sense that hm”yH .

= (Boundedness) F' is bounded from below, i.e., F'(x, z) > F{ for some Fj € R.
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A priori bounds on PDE solutions

A variational problem connected to nonlinear PDE:

1
inf G(y) = §||Vy|]%2(g)+/F(a?,y) d:z:—/uyda: over y € H'(Q). (3.1)
Q 0
Proposition

Suppose that u € L"(S)) for some r > ]%. Then the optimization problem (3.1)
admits a solution in H'(S)), which satisfies the constraint PDE.

Theorem
LetC,q C L*(£)) be bounded. Then there exists a constant K > (0 such that for all
solutions 1y of the semilinear PDE, it holds

Iyl zie) + lylle@ < K, forall u € Cua.
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Existence of solutions for learning-informed PDEs

Proposition
Letf: QxR —=RandF :{) xR — R be given as before with the extra
assumption that f € C (€2 x R). Then, for every ¢ > () there exists a neural

network N' € C*°(R? x R) such that

Sup ||f(7y> _N<7y)||U < €, (32)
[yll ooy <K

with K the uniform bound. Moreover, the learning-informed PDE
~Ay+N(Gy)=u inQ,  d,y=0 on 09,

admits a weak solution which satisfies the a priori bound for sufficiently small e > 0.

Only approximation property ||y|| ;=) < K is needed in (3.2) .

. . T »
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Sensitivity of control-to-solution map

Theorem (under constraint on negative part of 9, f (-, 1))
Suppose u,, = uy + t,h for a sequencet,, — 0, and suppose there exists
Yn € ar(uy) withy, — yo in HY(). Then, we have

m Local Lipschitz property:

lYn — voll o) < Ct,
for some constant C'.

= Directional differentiability: Every weak cluster point of %=, denoted by p,

solves
—Ap+IN(,y)p=h in Q,  Idp=0 on 99,

and p satisfies the energy bounds for every h € L*(f)),

HpHﬂl(Q)mC(ﬁ) <C HhHLQ(Q)

for some constant C'.

o . T »
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Learning-informed double-well potential

10°
— NN approximation of f
2 —original f |
1’500 -+ NN approximation of f
1 i | 1,000 —original f
500 |
OF * 0
—o00 |
—11 I —=1,000
, [ T R R R
e Details of the left Figure

~10-=5 0 5 10

Approximation of f(y) = ﬁ(ﬁ — y) by

neural network function.
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Learning-informed double-well potential

.10°

— NN approximation of F’
—original F'

|[— O = D W OO

10-5 0 5 10

The double well potential F' and Fl\

reconstructed from f and N/, respectively.

1+ |-~NN approximation of '| ¢
500 —original F'

-2 =1 0 1 2
Details of the left Figure
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Universal approximation of learning-informed operator

Proposition
There exists N - R? x R — R so that

sup [[f(y) = NGyl <6

[yl ooy <M
for e > 0 arbitrarily small. Further, we have the error bounds
|TTI(w) — Hpr(u)|| y < Ce,  forall u € Cyq,

where the constant C' > (0 depends on f and y,. When f is locally Lipschitz, there
exists also N so that

Sup ”8yf<7y> o ayN(aZU)HU S €1,

|yl poo(y<M
for sufficiently small e; > 0, and there exist some constants Cy > 0 and C; > 0

||p0 — peHHl(Q)mC@) < Cher + Cye,  forall u € Cyy.

The adjoint variables p,, py are directional derivatives of 115 and 11, respectively.

o . T »
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KKT condition and semismooth Newton method

The KKT system of the optimal control problem (A = I, C,q a box, ¢ > 0 fixed)

~Ay+N(,y)—u=0inQ, 9d,y=0 ond,
—Ap+ION(,y)p+y=g inQ, 9I,p=0 ond,
—p+ A+ au=0 in{),
A —max(0, A + c(u —u)) — min(0, A + c(u —u)) =0 in €,

= We use a semismooth Newton (SSN) method for solving the above system.
= The PDE is only fulfilled in the end of the iteration of the SSN.

= To respect the nature of the reduced problem, a SSN Sequential Quadratic
Programming (SQP) algorithm is considered: For every k solve the (QP)

1
minimize (T (ug) + =Hi(ug)ou, Ou)v-v,
0,€U 2 7

subjectto u < uy +0, <u a.e.in ).

24/41 Learning-informed physics W i é
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A SSN-SQP algorithm

Define a merit function ®y (1) as

I (i + oy g) + Biol || (wr + pby s — ﬂ)+“L2(Q) o || e+ pb — w_HLQ(Q))'

e Initialization: Using semi-smooth Newton for an initial guess of solutions.
e Key steps of every SQP:

(1) Compute an update direction 9, ;; using (inexact) SSN but to get approx. stat.
point of QP.

(2) Using line search with Armijo condition to adjust step length 1, > 0 in every
SQP sub-problem.
For every iteration [ in the line search, to evaluate Jy/(ux + %5%/{) we need the
solution of the PDE which is obtained by Newton iterations.

Primal-dual active set strategy (pdAS) is employed as SSN in every SQP
sub-problem solve.
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Example of stationary Allen-Cahn equation

Plots of state and control pairs (yxr, upr) and (y*, u*) by learned (left) and exact (middle) PDEs, respectively, as well as their
differences (right) |yn — y*|, lun — u’|

26/41 Learning-informed physics Wik i .



Example of stationary Allen-Cahn equation

Merit function values

- Learning-informed PDE

— Original PDE

6 8 10

Norm of the residuals

-4~ Learning-informed PDE

103 —_—— — Original PDE

ok

10—3 i
1079
10—9 i
10—12 .

—15 ‘ ‘ ‘ ‘
10 2 4 6 3 10
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Optimal control of non-smooth PDEs

Consider now the following optimal control problem
L 1 p e
(y)u)reng}'(rg)'iemm 5”9 — QHL2(Q) + §HU||L2(Q)>
subjectto — Ay + f(-,y)=u in Q, y=0 on IS.
U € Coq :={v € L*(Q) : a(x) < v(z) < bx), forx e Q}.

= The function f : {2 x R — R is not necessarily Fréchet differentiable, but
directional differentiable only.

*Christof, Meyer, Walther and Clason, Optimal control of a non-smooth semilinear elliptic equation, Mathematical Control &
Related Fields, 2018
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Optimal control of non-smooth PDEs

Consider now the following optimal control problem
L 1 p e
(y)u)reng}'(rg)'iemm 5”9 — QHL2(Q) + §HU||L2(Q)>
subjectto — Ay +N(-,y)=u in Q, y=0 on 0.
U € Cog = {v € L*(Q) : a(x) < v(z) < bx), forx e Q}.

= The function f : {2 x R — R is not necessarily Fréchet differentiable, but
directional differentiable only.

= { is learned via NNs with nonsmooth activation functions, e.g., ReLU, thus \ is
a nonsmooth function

Some relevant questions*:

= Various stationarity concepts and their relations

= Numerical algorithms for realizing the KKT condition (B-stationarity)

*Christof, Meyer, Walther and Clason, Optimal control of a non-smooth semilinear elliptic equation, Mathematical Control &
Related Fields, 2018
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Stationary conditions

= Primal optimality condition (B-stationarity condition): (II = I1)
(Tl(u) — g, 1" (u; b)) + a(u,h) >0 forall h e Te (u)
where

Te.,(u {h € L*(Q) : h(z) > 0aet(x) = a(z), h(z) <0ae. u(z) = b(a:)}

= Dual optimality condition (C-stationarity condition):
~Ay+N(,y)—u=0inQ, g
—Ap+xp+y=g inQ), p=

X € ON(-,y)in
(—p+ au,u —u) >0 forall u € Cyuy.

= Dual optimality condition (Strong-stationarity condition):
C-stationarity + sign condition on the multiplier y

X(@)p(z) € Nz, y(2)p(x), No(z,y(z))p(z)] ae z el

28/41 Learning-informed physics Wik i é
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Relations among various stationary conditions

Let Q2r C € be the set where f(-, y) is nondifferentiable, and
(= 2, U L2 C €2 be the active set where u = aoru =b,anda < ba.e.in{}

At (y, u), the following constraint qualification is considered:
(i) €2r, {2, and (), are measurable sets, resp.,
(i) [ N Q| = 0.

Selected results®:

= (y, u) locally optimal = B-stationarity

®Master thesis: K. Vélkner, supervisor: M. Hintermiiller, Optimal control of a class of nonsmooth semilinear elliptic PDEs,
2021
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Relations among various stationary conditions

Let Q2r C € be the set where f(-, y) is nondifferentiable, and
(= 2, U L2 C €2 be the active set where u = aoru =b,anda < ba.e.in{}

At (y, u), the following constraint qualification is considered:
(i) €2r, {2, and (), are measurable sets, resp.,
(i) [ N Q| = 0.

Selected results®:

= (y, u) locally optimal = B-stationarity

= For piece-wise C'! continuous function f(x, -), local optimality = C-stationarity

®Master thesis: K. Vélkner, supervisor: M. Hintermiiller, Optimal control of a class of nonsmooth semilinear elliptic PDEs,
2021
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Relations among various stationary conditions

Let Q2r C € be the set where f(-, y) is nondifferentiable, and
(= 2, U L2 C €2 be the active set where u = aoru =b,anda < ba.e.in{}

At (y, u), the following constraint qualification is considered:
(i) €2r, {2, and (), are measurable sets, resp.,
(i) [ N Q| = 0.

Selected results®:

= (y, u) locally optimal =- B-stationarity
= For piece-wise C'! continuous function f(x, -), local optimality = C-stationarity

= C-stationarity + constraint qualification = strong stationarity

®Master thesis: K. Vélkner, supervisor: M. Hintermiiller, Optimal control of a class of nonsmooth semilinear elliptic PDEs,
2021
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Relations among various stationary conditions

Let Q2r C € be the set where f(-, y) is nondifferentiable, and
(= 2, U L2 C €2 be the active set where u = aoru =b,anda < ba.e.in{}

At (y, u), the following constraint qualification is considered:
(i) €2r, {2, and (), are measurable sets, resp.,
(i) [ N Q| = 0.

Selected results®:

= (y, u) locally optimal =- B-stationarity
= For piece-wise C'! continuous function f(x, -), local optimality = C-stationarity
= C-stationarity + constraint qualification = strong stationarity

= Strong-stationarity = B-stationarity

®Master thesis: K. Vélkner, supervisor: M. Hintermiiller, Optimal control of a class of nonsmooth semilinear elliptic PDEs,
2021
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Relations among various stationary conditions

Let Q2r C € be the set where f(-, y) is nondifferentiable, and
(= 2, U L2 C €2 be the active set where u = aoru =b,anda < ba.e.in{}

At (y, u), the following constraint qualification is considered:
(i) €2r, {2, and (), are measurable sets, resp.,
(i) [ N Q| = 0.

Selected results®:
= (y, u) locally optimal =- B-stationarity
= For piece-wise C'! continuous function f(x, -), local optimality = C-stationarity
= C-stationarity + constraint qualification = strong stationarity
= Strong-stationarity = B-stationarity

= B-stationarity + constraint qualification = strong-stationarity
For the last statement, the CQ requires that 7¢_(u) is dense in L*(£2).

®Master thesis: K. Vélkner, supervisor: M. Hintermiiller, Optimal control of a class of nonsmooth semilinear elliptic PDEs,
2021
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Numerical algorithm— A descent method

Define an auxiliary problem®:

mhin %q(h, h) + (Il(u) — g, 11" (u, h)) + a(u,h) over heF. (3.3)

Proposition
Let u be a feasible point for the reduced problem. Then the following properties are
satisfied:

(1) The problem (3.3) admits an optimal solution h € T¢.,(u).
(2) If h # 0, then h is a descent direction for the reduced objective.

(3) If the directional derivative IT'(u; -) : LP()) — Y is bounded and linear, then h
IS unique.

Conceptual algorithm: Solve Problem (3.3) iteratively using a line search method to
find a descent direction of the reduced cost functional.

®Hintermdiller, Surowiec. A bundle-free implicit programming approach for a class of elliptic MPECs in function space,
Math. Prog. A, 2016.
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Numerical algorithm— A descent method’

Consider a smooth approximation of the auxiliary problem:

1
mhin §q(h, h)+ (Il(u) — g,we(u, b)) + a(u,h) over heF. (3.4
we(u, h) takes into account the structure of the directional derivatives of ReLU

network functions.

Lemma
Let u be a feasible point of the reduced problem. If h = 0 solves (3.4) for all ¢ < ¢,
then u is a B-stationary point of the reduced problem.

Proposition
Let u be a feasible point for the reduced optimal control problem. There exists

e > 0, such that for all e < €*, if he # 0 solves problem (3.4) at the feasible point
u, then h,. is a descent direction for the cost functional.

Algorithm: Primal-Dual-Active-Set algorithm + (semi-smooth) Newton method +
Line search

"Dong, Hintermiiller, Papafitsoros. Optimal control of learning-informed nonsmooth PDEs, 2021, in preparation.
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Numerical results

A RelU network function f and its derivative

30 function graph of f ' ' ' ' ' '
derivative graph
40 |
30
20
10+
0 1 1 1 1 1 1
-20 -15 -10 -5 0 5 10 15 20 25 30
Monotone ReLU network function A
Cost function value at iterations
102} 1
101 L L L L L L L
2 3 4 5 3] 7 8 9 10

Cost function of the optimal control at iterations.

nnnnn

Computed control variable
(o = 1072, a = —1000, b = 1000)

Computed state variable
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Numerical results

A RelU network function f and its derivative

60
function graph of f ' ' j '

derivative graph
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Nonmonotone ReLU network function AV
Cost function value at iterations

102t 1
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Cost function of the optimal control at iterations.
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Computed control variable
(a =107%, a = —200, b = 1000).

Computed state variable.
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(Quantitative) MRI

Bloch equations describe the physical law behind MRI
dy yi(t) y2(t) ys(t) — pme
X vB(t
(6) = ult) x yB(e) - (Y, a0 B0

where B = By + B; + G denotes magnetic field, p is proton density.
MRI experiment consists of three major steps:

= Aligning magnetic nuclear spins in an applied constant magnetic field 5
= Perturbing this alignment via radio frequency (RF) pulse 554

= Applying magnetic gradient field G to distinguish individual contributions

Alignment of Spins in a
Magnetic Field

MRI System Block Diagram

Figure: MRI diagram (Published in Health and Medicine)
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(Quantitative) MRI

Bloch equations describe the physical law behind MRI

gi{() y(t) x 4 B(t) — (le(;f)jy;(;f)pys(t)T—lpme)

where B = By + B; + G denotes magnetic field, p is proton density.

Ideal T1 Ideal T2 Ideal p

™3 1600 — 6000

11400 15000

11200
14000

11000

300 3000

600
2000

400

1000
200

Figure: Simulated ideal tissue parameters of a brain phantom.
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gMRlI as a ,control problem”

qMRiI fits the general framework:

| -
minimize =||PF(y) — ¢°||5 + =||ul|?,
(y,u) 2 2
subject to

dy yi(t) walt) yst) — pme
at<> y()X’}/ () ( T2 9 T2 ) T1 ) 1
y(0) = pmy,
u < Cad-

= The goal is to estimate the physical parameters u = (p, 11, T5)
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gMRlI as a ,control problem”

qMRiI fits the general framework:

| -
minimize =||PF(y) — ¢°||5 + =||ul|?,
(y,u) 2 2
subject to
Y= N(“)?
u & Cad-

= The goal is to estimate the physical parameters u = (p, 11, T5)

= ANNs N\ approximate the parameter-to-solution map (Nemytskii type):

(p7 T17T2> = (ytp R 7y75L>
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Universal approximation of learning-informed Bloch operator

Proposition

The operatorI1 : C,q C [L(Q)T]? — [(L>(Q))%]L is Lipschitz continuous, and

Frechet differentiable with locally Lipschitz derivative.

Both II and [1ys = N are operators of Nemytskii type in the gMRI case.

Proposition
Letu = (T1,T5, p)" € Cuq. Then for arbitrary small e > 0 and e; > 0, there
always exist neural network approximations so that

1 Tpr(1e) = TL(u) | goepye < €
and
!/ /
M) = I0(u) || 2 2y, (e (o) < €1
are satisfied.
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SQP algorithm

Define | N
In(u) = S[| PFN(u)) - 9l + §I|ull%-

The derivative J/(u) has an explicit form

(pWN"(T1, Tn)) " N (11, To))  F*(F(pN (11, T3)) — g) + a(ld — A)(T1, Tb, p) .

Every QP-step solves

1
minimize (T (ur), h)o+ v + §<Hk(uk)h, hyy-y overh €U

st. ur+h € Cy,

where Hk(uk) is a pos.-def. approx. of the Hessian of Jr at u; € Cu4:
(pN'(Th, T2))*, N(T1, Tz)) ' F* F(p(N'(T1, T2)), N (T1, T2)) + oo(ld — A).
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Quantitative magnetic resonance imaging
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Quantitative magnetic resonance imaging

T1 Error Rate:0.12648 T2 Error Rate:0.10194 {p) Error Rate:0.006164

09
08

107

106

T1 Error Rate:0.084323 T2 Error Rate:0.058225 Density Rate:0.0034495

09 09

08 0.8
10.7 107

10.6 106

Learning-based (bottom) compared to a pure physics-integrated method (above)
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Conclusion

What we offer:
= A generic optimization framework with learning-informed physical constraints
= Both analysis and numerical algorithms for the overall optimization framework
= Learning specific operators between infinite dimensional spaces
= Universal approximation properties for the learning-informed operators

= The framework for learning-informed nonsmooth physical models

Ongoing:
= More general physical operator learning schemes
= Interplay of operator learning and optimal control

= Hybrid physics-informed NN for multi-scale problems
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Thank you!
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