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Motivation

Motivation

Renewable energy proliferation such as solar and wind, and
more carbon emission constraints implies

New paradigms for Electricity Markets: modeling and
algorithms.
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Motivation

Motivation

A. Baillo et al. (2004) : New idea based on fixing scenarios for
some producers instead of Nash equilibrium.

M. Fampa et al. (2008) : Bilevel programming formulation for
the problem of strategic bidding under uncertainty in a
wholesale energy market.

In D. Aussel et al. (2017) Quadratic functions and a game
where the demand is known by the players.

We extended those ideas for the case of convex piecewise linear
bids, stochastic demands and learning process.
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The model The Network and Dispatch Program

The Network

Graph (V,E).

G ⊆ V subset of nodes associated with energy producers or
firms (agents). Usually a small number. Now increasing because
of small generators (renewal)

agent ISO (Independent system operator)
Transactions are organized by means of an auction, which takes
place as follows:

1. Firms submit simultaneously functions c = (cn)n∈G , knowing an
estimation of the demand

2. Vector of demands d = (dn)Nn=1, where dn ≥ 0 are realized.
3. After observing the vector of bids c and demands d, the central

agent (ISO) runs a dispatch program subject to a number of
network constraints. The results are the quantities to be
produced by each generator.

4. Firms produce as mandated by the minimum cost program and
are paid at marginal cost of electricity at their nodes or a
function of that.
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The model The Network and Dispatch Program

The Dispatch Program

The central agent minimizes the total cost of production:∑
n∈G

cn(qn)

subject to the technological and physical constraints:

Nodal Balances: At each node, available power must satisfy
nodal demand.∑

e∈Kn

re
2
f 2
e + dn ≤ qn +

∑
e∈Kn

fesgn(e, n), n ∈ G (1)

∑
e∈Kn

re
2
f 2
e + dn ≤

∑
e∈Kn

fesgn(e, n), n /∈ G (2)
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The model The Network and Dispatch Program

The Dispatch Program

Generation constraints: for renewal stochastic

qn ∈ [0, q̄n] (3)

Transmission Constraints:

0 ≤ fe ≤ f̄e (4)
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The model The Network and Dispatch Program

The Dispatch Program

Given a demand vector d = (dn)Nn=1, the central agent (ISO)
solves :

min

{∑
n∈G

cn(qn) : (f , q) ∈ Ω(d)

}
(5)

Where:

Ω(d) =
{

(f , q) ∈ RE × RG : (f , q) satisfies (1)− (4)
}

Set of feasible plans.

Ω(d) is a compact convex set.

Nodal prices are set as shadow values associated to the nodal
power balances.
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The model The Bidders

The Bidders

Each producer bids a function cn(q).

The payoff function is given by : un(p, q) = pq − ĉn(q) . Where
ĉn is the real cost function.

Thus, the revenue is given by: E[un(λn(c , ·), qn(c , ·))] , that is,

E[(λn(c, ·)qn(c , ·))− ĉn(qn(c , ·))]
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The model Convex Piecewise Linear Bids and Costs

Dispatch Program Algorithm

|G | = n.

Each generator k has a convex piecewise linear function defined
by the slopes αk , βk and his break point q′k .

For k = 1, . . . , n.

Denote αn+k := βk .
Generator i can be thought as 2 generators: one with maximum
capacity q′i and linear bid αi and other with maximum capacity
q̄i − q′i and linear bid αn+i = βi .

Sort the slopes αi .

In each iteration, assign the maximum possible amount to the
generator with the lowest slope until demand is met.
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The model Convex Piecewise Linear Bids and Costs

Finite number of iterations

Theorem

Let qi be the vector of quantities that in iteration i assigns the
maximum possible quantity to generator with the smallest slope
available then qi after at most 2|G | iterations is the optimal solution
to the ISO problem.
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Scenarios Approach

Scenarios Approach

Fix generator i .

Define a set of scenarios S for the remaining generators indexed
by s. Which occur with probabilities (ps)s∈S .

Each generator can learn from the cost functions bided by the
other player and update the probabilities. Bayesian for example.

Generator i plays the game reacting to other player’s strategies.
Then the bilevel problem solved by generator i is:

B i (d , p) =

máx
(α,β)

∑
s∈S

ps
(
λs(d)qis(d)− ĉ(qis(d))

)
s.t (qiS , λS) ∈ ISO(d)
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Scenarios Approach

Example

Assume that α2 ≤ . . . ≤ α|G |.
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Scenarios Approach

Convergence result

The previous problem B i (d , p) is equivalent to his (MPEC):

(MPEC )i (α−i , d , p) =



máx
αi ,qiS ,λS

∑
s∈S

(
psλsq

i
s − ĉ(qis(d))

)
s.t

∑
n∈G

qns = d , s ∈ S

0 ≤ qns ≤ q̄, n ∈ G , s ∈ S

λs − πq
n

s − αn
s ≤ 0, n ∈ G , s ∈ S

−πq
n

s ≤ 0, n ∈ G , s ∈ S∑
s∈S

(∑
n∈G

αn
s q

n
s − dλs +

∑
n∈G

q̄πq
n

s

)
= 0
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Scenarios Approach

Convergence result

Consider the following problem (MPEC )ipen(α−i , d , p) obtained
when we penalize the non-linear complementarity constraint:



máx
αi ,qiS ,λS

∑
s∈S

(
ps
(
λsq

i
s − ĉ(qis(d))

)
− µ

(∑
n∈G

αn
s q

n
s + q̄πq

n

s − dλs

))
s.t

∑
n∈G

qns = d , s ∈ S

0 ≤ qns ≤ q̄, n ∈ G , s ∈ S

λs − πq
n

s − αn
s ≤ 0, n ∈ G , s ∈ S

−πq
n

s ≤ 0, n ∈ G , s ∈ S

Where µ > 0 is the penalty parameter.
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Scenarios Approach

Convergence result

Theorem: Convex Piecewise linear bids convergence

There is a penalty parameter µ̄ > 0 such that problems B i (α−i , d , p)
and (MPEC )ipen are equivalent, and the complementary constraint
holds, for every µ > µ̄.
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Scenarios Approach

Penalty Algorithm: Solving for producer 1

Result: Expected Payoff and best strategy for generator 1
initialization;
Input: Number of players |G | , Maximum capacity value q̄k for

each player k ∈ G , the probability vector pS of each scenario
and some initial point q̃sn, n ∈ G , s ∈ S ;

while Complementary condition 6= 0 do
Solve penalized problem with qis = q̃is and obtain a solution
α̃,λ̃s ,πsqn n ∈ G , s ∈ S ;

Solve the ISO problem for each scenario s ∈ S , considering
α = α̃ and obtain a solution q̃sn ,n ∈ G ;

Increase µ
end
Return: Expected Payoff of generator 1 and best strategy.

Algorithm 1: Scenarios Approach Penalty algorithm
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Scenarios Approach

Local Search Algorithm

Result: Expected Payoff and best strategy for generator 1
Input: Number of players |G | , Maximum capacity value q̄k for

each player k ∈ G and probability vector pS of each scenario;
Step 1: For k ∈ {2, . . . , |G |}. Define the sets
Ik := {j ∈ {1, . . . , |Sk |} : pk(j) > 0};

Step 2: Define a scenario as
s ∈ S = {(tj2 , . . . , tj|G | ∈ S2×. . .×S|G | : j2 ∈ I2, . . . , j|G | ∈ I|G |};

for i ∈ |S1| do
1. Solve the ISO’s problem using our algorithm from chapter

1 ;
2. Compute the value psλ(ti , s)qiti ,s , where s ∈ S

3. Save the value
∑
s∈S

psλ(ti , s)qiti ,s as the new maximum if it

is greater than the previous maximum
end
Step 3: Return Expected Payoff of generator 1 and best strategy.
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Scenarios Approach

Numerical Results

Consider the 3 player asymmetric game with demand d = 2.

Each player chooses their slopes such that : α ∈ [0, 1] and
β ∈ (α, 1].

True cost function slopes for each player are (0.3, 0.5), (0.4, 0.5)
and (0.35, 0.55).
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Scenarios Approach

Numerical Results

10 10.5 11 11.5 12 12.5 13 13.5 14

N

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
P

ay
of

f
 Expected payoffs

Player 1
 Player 2
 Player 3
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Scenarios Approach

Numerical Results
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Scenarios Approach

Game Theory Approach

In this approach we find Nash equilibrium in the game using
classical algorithms. Lemke, C.E., Howson (1964), B. von
Stengel (2009), Herings, P.J.J., Peeters, R (2010)

The existence of such equilibria in guaranteed in this problem
(J. Escobar, A. Jofré (2007, 2012))
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Scenarios Approach

Numerical Results: Piecewise Linear

8 9 10 11 12 13 14 15

N

1.235

1.24

1.245

1.25

1.255

1.26

1.265

1.27

1.275

1.28
P

ay
of

f
 Generator 1 expected payoff

Mixed Nash
Scenarios Approach
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Scenarios Approach

What about quadratic bids ?

Assume that generators choose two parameters αn and βn
which define a quadratic function

cn(qn) = αnqn + βnq
2
n

Then for fixed d the dispatch problem is:

ISO(c , d) =



ḿın
∑
n∈G

αnqn + βnq
2
n

s.t
∑
e∈Kn

re
2
f 2
e + dn ≤ qn +

∑
e∈Kn

fesgn(e, n), n ∈ G∑
e∈Kn

re
2
f 2
e + dn ≤

∑
e∈Kn

fesgn(e, n), n /∈ G

qn ∈ [0, q̄n]
f ∈ F

Alejandro Jofré (UCh.) Strategic Pricing in network economies: learning and algorithmsErice. May 2022 28 / 33



Scenarios Approach

Numerical Results: Piecewise Linear and Quadratic
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Scenarios Approach

Numerical Results: Small resistance and no resistance
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Conclusions and Future work

Conclusions

We managed to find routines to solve the problem of the lower
level quickly and efficiently for the convex piecewise linear case.

The classical game theory approach takes much more
computational time but better solutions.

For small instances, the bilevel formulation of scenarios approach
and the Nash equilibrium formulation gives us similar results.
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Conclusions and Future work

Future Work: Introduction of massive renewable energies

Then, capacity is stochastic for some renewal

So, scenario approach, in which a scenario s is a set of bids and
capacity values.

Evolutionary game theory with updated information for each
auction round.

New ways to compute Nash equilibrium points !
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