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Feature Selection

• Interpretability by modeling choice: Given a matrix, choose a few 
columns



Feature selection

• Interpretability by modeling choice – Feature Selection for sparsity

• Provable guarantees for various greedy-variants

• Cost of interpretability: Feature Selection vs SVD



Motivation: 2-back problem

• Subject sees a stream of letters – “Does the current letter match the 
one 2 letters ago?”

• Contrast response times (wrt 0-back) and brain map summary 
recorded 
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Motivation: 2-back problem

• Rows: 500 subjects

• Columns: 27000 brain voxels + 380 behavioural features

• Goal: Predict the response time using a sparse embedding of features 
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Modeling choices

• Sparse Canonical Correlation Analysis (Witten et. al. 2009) [SOTA] 
• Find the “best” Subspace -- Strong empirical performance
• Inconsistent maps

• Greedy Feature Selection with a Bayesian prior
• Find the “best” subspace spanned by k columns - Strong empirical 

performance
• Interpretable maps



Brain map1

• Neural support consistent with cognitive control systems akin to 
the task

• Selected behavioral features known to correlate with reaction time 
and accuracy



Brain Voxel 2

Brain Voxel 1 
“Best” 1-dim proj. 

Data

• Principal components give best quantitative performance but loses 
interpretability.

• Feature selection retain interpretability, but
• Quantitatively worse,  and 
• Harder – replace a poly-time solvable with a combinatorial one.



Greedy selection in practice

Document summarization. 
[Vanderwende et. al. 2007]

Gene Analysis
[Paschou et. al. 2007]

Interpretability
[Koh et. al. 2017]

• Why does greedy work so well ? 
• Why does feature selection perform well vs best rank-k approximation?



Submodular functions

• A set variate function f is submodular iff for any 𝑆 ⊂ 𝑇:

• Diminishing returns property
• Examples: Entropy (e.g. log det), budget additive functions (e.g. 

facility location), rank function of matroids



Submodular functions

• Greedy	algorithm	is	provably good.
• 𝐺! is the set returned by the greedy algorithm
• 𝑆!∗ is the optimum solution to 

max
# $!

𝑓(𝑆)

• If f is submodular: 

𝑓 𝐺! ≥ 1 − %
&
𝑓(𝑆!∗)



Weakly submodular functions1

• Submodularity sufficient, not necessary for greedy guarantees

• Weaker condition: based on submodularity ratio 𝛾

• 𝛾 !,# =
∑ ! ∈ # [& !∪ ( )&(!) ]

& !∪ # )&(!)

• 𝛾 ≥ 1 ⇒ submodularity

• 𝛾 > 0 suffices for (1 − -
.$
) guarantees

[1] Elenberg, Khanna, Dimakis, Negahban. Annals of Stats 2018



Restricted strong concavity/smoothness 
(RSC/RSM)
• To bound the submodularity ratio for general functions, I will make 

use of RSC/RSM



First result: RSC implies weak submodularity

• Goal:
max

∥ ( ∥!$!
𝑙(𝑥)

• If 𝑙() is:
• m-Restricted strong concave on a certain subdomain, and
• M-smooth on another subdomain,
then,

𝛾 ≥
𝑚
𝑀
⟹ 𝑓 𝐺/ ≥ 1 −

1
𝑒^{𝑚/𝑀}

𝑓(𝑆/∗)



Recovery based bounds

• For any 𝛽) of size k, greedy/MP based algorithm recovers 𝛽*



Matching pursuit based selection

• Greedy choice

• Matching pursuit choice

• Same bounds hold! 

𝑠 ← 𝑎𝑟𝑔𝑚𝑎𝑥+ 𝑒+ , ∇𝑙 𝛽#



Stochastic selection
• Subsample before every greedy step 



Distributed selection



Distributed selection results

• With 𝜈! as subadditivity constant

• Can show: RSC implies weak subadditivity 



Extension to adaptive sequencing

• Goal: reduce the number of oracle calls (bottleneck in greedy 
algorithms)
• Also, extension to beyond k-sparsity constraint through p-systems
• Intuition: Generate a ``good enough” random subset of features, 

choose several of them in every oracle call. 
• Oracle calls: 𝑂(𝜖,-𝑟 log 𝑛)



Other extensions

• Greedy low rank approximation
• Kernel herding



Cost of interpretability

• Why does feature selection retain quantitative performance vs best 

rank-k approximation?1

• Goal: Interpretable dimensionality reduction for an arbitrary matrix A.

[1] Derezinski, Khanna, Mahoney. NeurIPS 2020 (best paper award)



Cost of Interpretability

• Optimal rank-k approximation 

• Choose a set S of k columns 

• What can we say about the cost of interpretability



Prior Art – worst case analysis

• Deshpande et. al. 2006
• There exists an algorithm with O(k) guarantees for 𝑆 ≤ 𝑘

• There exist matrices for which better than O(k) not possible 

“Tight” bounds



(Worst-case) Theory vs Practice 
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Image courtesy Michal Derezinski

The sampling algorithm used is k-DPP (Determinantal Point Processes)



Main results1

• Beyond worst-case analysis based on spectrum of the matrix
• Previous bound: 

• New bound: For s<rank(A) and a favorable 𝑡1:

[1] Derezinski, Khanna, Mahoney. NeurIPS 2020 (best paper award)



Summary of results
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“Bad” cases only when there is a sudden drop in spectrum of the matrix. 



Example of a sharp transition

• Let sr(A) be stable rank of A. There exists a matrix A such that if 

𝑠𝑟 𝐴 − 1 < 𝑘 < 𝑠𝑟(𝐴), then



Example: smooth decay (polynomial)

• No sharp drop in spectrum ⇒ even better guarantees! 

• If 𝑐%𝑖,. ≤ 𝜆/ ≤ 𝑐-𝑖,., then the upper bound:

• Example: Matern kernel  



Black-box interpretability

Which training data points are “most” responsible for predicting on points of interest ?



Working idea

• Approximate the test data distribution using samples from the 
training data1

• Challenges: 
• Not the same support 
• How to incorporate the model ?
• How to reliably choose training data samples ?
• Scale up on both time and space? 



Working idea

• Approximate the test data distribution using samples from the 
training data1

• Challenges: 
• Not the same support -- Use a smoothing prior GP(0,k)
• How to incorporate the model ? – Fisher Kernels
• How to reliably choose training data samples ? – Weak submodularity/DPP
• Scale up on both time and space? – Weak submodularity/DPP



Fisher Kernels

• Slight perturbations in the neighborhood of fitted parameters would 
impact the fit of two similar objects similarly
• Two similar objects will have similar gradients in the parameter of the 

model

• 𝐾 𝑥, 𝑦 = ⟨∇0𝑙 𝑥 , 𝐼,%∇0𝑙 𝑦 ⟩ . I is the Fisher information matrix.  



Fisher kernel: Intuition

• Set A: Fifty closest points in RBF similarity
• Set B: Fifty farthest points



Fisher kernel: intuition

• Set A’: Fifty closest points in Fisher similarity
• Set B’: Fifty farthest points



Implications

• Influence functions: Up-weighing which training point impacts the 
prediction of a given test point the most ? [Koh/Liang ICML 2017]
• Strict generalization of influence functions, provide a probabilistic 

foundation
• Lasso ⟺MAP solution of Bayesian Linear regression with Laplace priors
• K-Means ⟺ EM algorithm to optimize for parameters of mixture of gaussians

• Greedily selecting influential training data points is weakly 
submodular
• Empirical evidence for data summarization and data cleaning



Experiments
Removing “bad” points from MNIST. Identify which data points are responsible for misclassification on 4s vs 9s



Thank you! 

Take-aways: 

• Greed is provably good. 

• For feature selection, cost of interpretability is not high. 

provably



Neural networks are brittle

Can “fool” a NN by humanly-imperceptible injecting adversarial noise
(Image from Goodfellow et. al.2015)



Adversarial Training

• Natural Training: min
0

∑/ 𝐿0(𝑥/ , 𝑦/)

• Adversarial Training min
0

∑/ max∥1"∥$2
𝐿0(𝑥/ + 𝛿/ , 𝑦/)

• There is an unintended side effect1 

1 Urtera, Kravitz, Erichson, Khanna, Mahoney. ICLR 2021 



Setup 

Source: ImageNet
Target: CIFAR-10, CIFAR-100, SVHN, FMNIST, KMNIST, MNIST



Adversarial Training transfers better!



Feature visualization

Robust training seems to retain more humanly identifiable information. How do we test this? 



Example based learning
• Human beings learn through examples/prototypes, but can over-

generalize1

• Build a mental model of the concept based on prototypes 
[Newell/Simons 1972]

1 Khanna*, Kim*, Koyejo* NeurIPS 2016



Using Fisher Kernels for Interpretation

Most influential images



Using Fisher Kernels for interpretation

• Takeaway: Similar images are more influential for robust than natural
• Throwback: Theoretical guarantees for the greedy selection are vital here



Closing the loop: Human insights for 
classification
• Non-adversarially trained models are biased towards retaining texture 

info. [Geirhos et. al. 2019]
• Human beings use shape more than textures when classifying objects 

[Landau et. al. 1988] 
• Robustly trained neural networks are biased towards retaining shape 

information (Additional experiments on stylized ImageNet)
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algorithms, Bayesian Coresets, Algorithmic generalization guarantees.


