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@ Data-driven two-stage stochastic optimization
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Two-Stage Stochastic Programming

Random
event

— ———————
First-stage Recourse

® Traditional two-stage SP: minimize expected system cost
assuming distribution of random vector Y known

Lneig Ey[c(z,Y)]

® Sample Average Approximation: given samples {y'}7_, of Y
1 n
min Ey[c(z, Y)] & min = > c(z,y)

€EZ n“
i=1

® SAA theory: optimal value and solutions converge as n — oo

Can we use covariates/features to better predict the random vector Y7
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Stochastic Programming with Covariate Information

Smor'g Grid _

o

Ol BN
“n-nmh wI‘IT'illil

Production Planning/Scheduling

Power Grid Scheduling

Y: Load; Renewable energy outputs Y: Product demands; Prices

X: Weather observations; Time/Season X: Seasonality; Web search results

z: Generator scheduling decisions z: Production and inventory decisions

® Given historical data on uncertain parameters and covariates
L i _i\1n
Dn S ()/ax) i=1
® When making decision z, we observe a new covariate X = x
® Goal: minimize expected cost given covariate observation x:

;nggE[c(z, Y)| X =x]
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Stochastic Programming with Covariate Information

® Assume we have uncertain parameter and covariate data pairs

Dy = {(yiaxi)}7:1

When making decision z, we observe a new covariate X = x

Goal: minimize expected cost given covariate observation x:

inE[c(z,Y)| X =
min Efc(z, Y) [ X = x]

Challenge: D, may not include covariate observation X = x

How to construct data-driven approximation to conditional SP?
@ Learn: predict Y given X = x

@® Optimize: integrate learning into optimization (with errors)

Assume Y = f*(X) + Q*(X)e with X and ¢ independent
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Separate Learning and Optimization

@ Use data to train our favorite ML prediction model:

A

fo(+) € arg min oF(xD),y' f
(1) € fg)g;(( ).y") + po(f)

® Given observed covariate X = x, use point prediction within
deterministic optimization model

min ¢(z, n(x))
® Modular: separate learning and optimization steps
® Expect to work well if (and likely only if) prediction is accurate

® Does not yield asymptotically consistent solutions
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Integrated Learning and Optimization

Approach 1: Modify the learning step!

® Change loss function in ML training step to reflect use of
prediction within optimization model

® More challenging training problem + less modular

Approach 2: Modify the optimization step?

® Change optimization model to reflect uncertainty in prediction

Approach 3: Direct solution learning?
® Attempt to directly learn a mapping from x to a solution z

® Handling constraints and large dimensions of z is challenging

!Kao et al. [2009], Donti et al. [2017], Elmachtoub and Grigas [2017]
?Ban et al. [2018], Bertsimas and Kallus [2020], Sen and Deng [2018]
3Bertsimas and Kallus [2020], Ban and Rudin [2018]
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Empirical Residuals-based Sample Average Approximation

Approach (Sen and Deng [2018],Ban et al. [2018],Kannan et al. [2020a])
@ Use data to train our favorite ML prediction model = f,,, @,,

1 i i
fa(-) € argmin = "[ly" — £(x")|?

f(hoer N3
Compute empirical residuals &/ := [@,,(xi)]_l(yi - f,,(x")), i€ [n]

@ Use {fy(x) + Qn(x)&}}7_, as proxy for samples of Y given X = x
1o s A .
min — Z c(z, fa(x) + Qn(x)E}) (ER-SAA)

zEZ N “
i=1

e Convergence conditions and rates: Kannan et al. [2020a]
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Comparison: Nonparametric Reweighting-Based SAA
Bertsimas and Kallus [2020]
® Solve the following reweighted SAA problem

n

miy 2 wy(x)e(z,y"),
=

where {w/(:)}7_, are weight functions determined using D,
e Constant weights = SAA that ignores covariate information

® Examples of weight functions
® kNN-based: w/k"N(x) = 1I[x" is a kNN of x]
. P x’h—x
® kernel-based: w/kr(x) = ——— 24—
2}1:1 K (th:X>
® others based on regression trees and random forests
°

Advantages: minimal assumptions on f* and D,,

Drawback: could be data-intensive when dim(X) or dim(Y) is
large
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Results with Correct Model Class (p = 1)

Red (E): ER-SAA + OLS
Black (k): Reweighted SAA with kNN

dx=10 dx=100
35 : 35
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b=kt T2 T
0 o T 0 = 1
k E k E kE kE kE k E k E k E k E _kE
n=16 n=22 n=55 n=220 n=1100 =152 n =202 n =505 n =2020 n = 10100

® 50 data replications x 20 covariates = 1000 experiments

® Boxes: 25 and 75 percentiles of upper confidence bounds;
Whiskers: 2 and 98 percentiles

Jim Luedtke Data-Driven MSO May 21, 2022

9/33



Results with Misspecified Model Class (p # 1)
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@® Distributionally Robust Extension
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DRO Extension

Summary of Kannan et al. [2020b]
® Solve the DRO model:

QHDRO

(x) =min sup Ey.qlc(z, Y)],
zEZ Q€73,,(X)

where P,(x) is a data-driven ambiguity set for the distribution
of Y given X = x that is centered on residuals-based samples
{fa(x) + Qu(x)E}} 1,

® Convergence shown for various forms of ambiguity set:
Wasserstein/Monge, phi-divergence, sample-robust

e Key computational challenge: data-driven tuning of ambiguity
set radius

® Small data: best to use method that chooses radius
indepedent of x
® More data: obtain more consistent results by tuning radius to x
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Sample Empirical DRO Results

50 dy =10 50 d, =100
a0 a0
30 I 30
20 -[ 20
10 | 10
T Eaxt
0 0

WSHE WSHE WSHE WSHE

n=55

n=110 n=220 n=550

WSHE WSHE WSHE WSHE
n=505 n=1010 n=2020 n=5050

Boxes: 25 and 75 percentiles of upper confidence bounds;
Whiskers: 2 and 98 percentiles

® W: Wassterstein/Monge
® S: Sample robust

® H: ¢-divergence using Hellinger distance
e E: ER-SAA with no DRO
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© Multi-stage Stochastic Optimization
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Multistage Stochastic Optimization

Random Random Random
event event event

— ——> 000 —| ——
Stage #1 Stage #2 Stage #T-1 Stage #T
decisions decisions decisions decisions

Complexity of multi-stage stochastic programs can grow
significantly with the number of stages T!

Stage1
Stage 2
Stage 3
Low High Low High Stage T a{ \®
Stage T L: Low Rainfall
T-1 H: High Rainfall
Scenario 1 Scenario 2

Stochastic Dual Dynamic Programming (Pereira and Pinto
[1991]): Exploit recombining scenario tree structure to limit

number of value functions that need to be approximated.
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Multistage Stochastic Optimization

Random Random Random
event event event

— —s @00 —| ——
Stage #1 Stage #2 Stage #T-1 Stage #T
decisions decisions decisions decisions

® Decision Process: z; ~> & ~> zp ~> - €7~ ZT

At stage t, solve

cost of decisions z; + expected cost of decisions z;

min in current stage t in future stages given history (&1,...,¢¢)

z:€Z¢(ze—1,61)

® Assume stationary time series model:
§e = (§e-1) + Q*(&e—1)ee
® Goal: Given a single historical trajectory of {{:}

D, = {go,glv"' 7£n}

estimate optimal first-stage decision z;
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Related Work and Goals

Bertsimas et al. [2021]:
® Assume given an i.i.d. set of historical sample paths

e Construct a robust optimization model with uncertainty sets
built around sample paths

® Show asymptotic convergence to optimal solution as the
number of sample paths grows

® Solve approximately using decision rule approximations
Other related work: Ban et al. [2018], Bertsimas and McCord
[2019], Silva et al. [2021]
Our goals:

e Use single historical sample path (assuming time series model)

® Construct data-driven approximation that can be solved using
Stochastic Dual Dynamic Programming (SDDP)

® Establish convergence as size of sample path grows
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Problem Setup

® Given historical data from a single trajectory of {{;}
D, = {50’51’ e 7£n}
® Want to solve

Vl(gl) = min ) fl(zlaé.l) +E[V2(217€2) ‘ 61]7

21621(51
where
stage t cost  expected cost of future stages
. —
Vt(zt—hf[t]) = min fi(zt,&:) +E [Vt+1(zt7£[t+l]) | f[t]]v te[T-1],
z:€Zi(zt-1,6r)

Vr(zr-1,§m) = min )fT(ZT7£T)~

zr€Z7(z7-1.8T

® Assume

® True model: & = f*(&{r—1) + Q" (&r—1)e¢ with i.id. errors {e;}
® \We know function classes F, Q such that f* € F, Q* € O

Jim Luedtke Data-Driven MSO May 21, 2022 18 / 33



Empirical Residuals-based Sample Average Approximation

@ Estimate 7, Q* using our favorite ML method = 7?,,, @,,

Compute empirical residuals

A~

&= [Qu(@ I E — @), ieln]

@ Use {#,(&:) + Qn(&:)2 3, as samples of £411 given & in SAA

Tailored convergence analysis required since same empirical errors
&), used for all time stages

&

Stage t

Stage t+1 O . O

e+ 0uE)e  Ae) + Gu(&)E, hle) +Qu&)
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Convergence Theory

Assumptions on the multistage stochastic program:

Assumptions on the ML setup:

Asymptotic optimality
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Convergence Theory

Assumptions on the multistage stochastic program:
® Can always take recourse decisions to keep system feasible

® The feasible region Z; for each stage t is bounded

Assumptions on the ML setup:

Asymptotic optimality
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Convergence Theory

Assumptions on the multistage stochastic program:
e Can always take recourse decisions to keep system feasible

® The feasible region Z; for each stage t is bounded

Assumptions on the ML setup:
® The functions f* and Q* are Lipschitz continuous
° ﬁ, — f* and Q,, — @ uniformly on their domains

Asymptotic optimality
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Convergence Theory

Assumptions on the multistage stochastic program:
® Can always take recourse decisions to keep system feasible

® The feasible region Z; for each stage t is bounded

Assumptions on the ML setup:
® The functions f* and Q* are Lipschitz continuous

o f,— f*and Q, — Q* uniformly on their domains

Asymptotic optimality

Under above assumptions, as the historical sample size n increases,
any first-stage ER-SAA solution converges to an optimal solution
of the true multistage stochastic program
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Convergence Theory

Result holds with these weaker assumptions on the ML setup:
® The functions f*, f,, Q*, and Q, are Lipschitz continuous

® Mean-squared estimation error consistency:

CSTIFE ~AEI 2o,

i€[n]

L@ E ] - [QE ] R 2 0

i€[n]

® Foreachte [T —1]:
Eerry [[IF(6) = Bl ] 20,
Eeinr, [1Q7(6) = Qu(&n)l[&1] 2 0

Py = %Zie[n] 0z is the true empirical distribution of errors

These assumptions can be readily verified for linear vector
auto-regressive processes
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Rates of Convergence

Assume
® The errors {€:} obey a light-tailed distribution

® The true multistage stochastic program satisfies assumptions
required for SAA convergence rate analysis (e.g., Shapiro
et al. [2009])

® The regression estimates £ and Q, satisfy large deviation
properties
Rates of convergence of regression estimates dictate rates of
convergence of ER-SAA solutions

® For parametric time series models, rate of convergence of
ER-SAA equals rate of convergence of classical SAA
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Numerical Experiments: Hydrothermal Scheduling

® Decisions z;: Hydrothermal & natural gas generation, spillage

® Random vector & Amount of rainfall
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Numerical Experiments: Hydrothermal Scheduling
Assume true time series model for rainfall is of the form

§e = (ar + Brée-1) exp(er),

* * d-
where of = aj 15, B = Bl e S N(u,X)

| \ | |
| | i | f | [ o
A ==Y RN =
| | | [
] N M‘wl)‘f‘”f\ n
(1] AVAVRVAVAVAY U\ |V
vV \ \ /] \ Y
|
|
|| | | ‘ . { .| f e
I L= LA NANAN AR =
il 0l NI ‘\
LT ] WUV
f f \f \\/ “.“ x" vV VY

Good fit to historical data over 8 decades! (Shapiro et al. [2012])
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Numerical Experiments: Hydrothermal Scheduling

® Consider the Brazilian interconnected power system with
four hydrothermal reservoirs

® Generate a sample trajectory of {&;:} using time series model
e = (of + Bi&e-1) exp(er),
where o} = al1p, Bi = Biriar et N N(i, E)
e Estimate coefficients (&, 3;) such that
&¢ = Qer12, Pe = Peirz
Use these to estimate samples of the errors ¢

® Solve the ER-SAA model using SDDP. j1 Dowson and
Kapelevich [2021].
Estimate sub-optimality of ER-SAA solutions
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Results When the Time Series Model is Correctly Specified

Estimate true heteroscedastic model: & = (af + S5&—1) exp(et)
Lower y-axis value = closer to optimal

T = 12 stages T = 36 stages

N
>

B
o
£
C

3 35

v

30

w
=

25

N
v

20

%@@@T é%é%@

n=4 n=6 n=10 n=14 n=20 n=50 n=4 n=6 n=10 n=14 n=20 n=50

=
4

o

UCB on % optimality gap
= N
o o

o o

o L

n: years of historical data (observations = 12n)

Boxes: 25, 50, and 75 percentiles of optimality gap estimates;
Whiskers: 5 and 95 percentiles
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Results When the Time Series Model is Misspecified

Estimate seasonal additive error model:  &; = of + B{&—1 + ¢+
Lower y-axis value = closer to optimal

T = 12 stages T = 36 stages

40 40
235 35
&
230 30
£
®25 25
£
220 20
o
X35 15
c
o
. ILz
5]
5 5
0 [}

C

n=4 n=6 n=10 n=14 n=20 n=50 n=4 n=6 n=10 n=14 n=20 n=50

n: number of historical samples per month

Boxes: 25, 50, and 75 percentiles of optimality gap estimates;
Whiskers: 5 and 95 percentiles
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Concluding Remarks

ER-SAA: a modular approach to using covariate information in
optimization under uncertainty

® DRO extension yields improved results in low data regime

® Multi-stage extension solvable using Stochastic Dual Dynamic
Programming

Future research directions
® Robust multistage
® Discrete recourse decisions

® Possible for optimal value convergence rates to improve over
prediction rate “limits”?

Questions? jim.luedtke®@wisc.edu
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