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Introduction

We study a general class of convex stochastic optimization (CSO)
problems that covers

financial models with or without transaction costs, constraints or
illiquidity effects.
convex stochastic control (including linear-quadratic),
classical SP models (LP, NLP,. . . ) from operations research,
...

Combining convex analysis with stochastic analysis, we

simplify and extend the existing theory of CSO and of “functional
analytic finance” to much more general models (constraints,
transaction costs, illiquidity effects, semi-static trading strategies, . . . ).
resolve measurability problems in popular stochastic DP formulations.
derive duality and optimality conditions: stochastic KKT-conditions,
costate variables and maximum principles, gradients of cost-to-go
functions, calibration of martingale measures and prices systems to
observed derivative prices, . . . .
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Pennanen and Perkkiö Duality in convex stochastic optimization May 21, 2022 3 / 41



Convex stochastic optimization

Given a filtered probability space (Ω,F , (Ft)
T
t=0, P ), we study the

optimization problem

minimize Eh(x) :=

∫
Ω
h(x(ω), ω)dP (ω) over x ∈ N , (SP)

where

N = {(xt)Tt=0 |xt ∈ L0(Ω,Ft, P ;Rnt)},
h : Rn × Ω → R is a convex normal integrand (n = n0, . . . , nT ):

h is B(Rn)⊗F-measurable,
x 7→ h(x, ω) lsc and convex for P -almost every ω ∈ Ω,

the integral is defined as +∞ unless the positive part of the integrand
is integrable.
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Convex stochastic optimization

Example (Mathematical programming)

If

h(x, ω) =


f0(x, ω) if fj(x, ω) ≤ 0 for j = 1, . . . , l,

and fj(x) = 0 for j = l + 1, . . . ,m

+∞ otherwise,

where fj are convex normal integrands, affine for j > l, then h is a normal
integrand and the problem becomes

minimize Ef0(x) over x ∈ N ,

subject to fj(x) ≤ 0 j = 1, . . . , l a.s.,

fj(x) = 0 j = l + 1, . . . ,m a.s.

(MP )

The case l = 0 (no equality constraints) was studied by [Rockafellar and
Wets, 1978] in the case of bounded strategies. When fj(·, ω) are all affine,
we recover the stochastic LP studied since [Dantzig, 1955].
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Convex stochastic optimization

Example (Optimal stopping)

If nt = 1 for all t and

h(x, ω) =

{∑T
t=0 xtZt(ω) if x ≥ 0 and

∑T
t=0 xt ≤ 1,

+∞ otherwise,

for an adapted real-valued process Z, then h is a normal integrand and the
problem becomes

minimize
x∈N+

E

T∑
t=0

xtZt subject to

T∑
t=0

xt ≤ 1 P -a.s.

This is a convex relaxation of the optimal stopping problem. The
relaxation does not affect the optimum value (works also in continuous
time).

Pennanen and Perkkiö Duality in convex stochastic optimization May 21, 2022 6 / 41



Convex stochastic optimization

Example (Stochastic control)

Let xt = (Xt, Ut) and

h(x) =

T∑
t=0

Lt(Xt, Ut) +
T∑

t=1

δ{0}(∆Xt −AtXt−1 −BtUt−1 −Wt),

where Lt is Ft-measurable convex normal integrand and At, Bt, Wt are Ft-measurable
random matrices/vectors. Then h is a normal integrand and the problem becomes

minimize E

[
T∑

t=0

Lt(Xt, Ut)

]
over (X,U) ∈ N ,

subject to ∆Xt = AtXt−1 +BtUt−1 +Wt t = 1, . . . , T

(OC)

[Bertsekas and Shreve, 1979]: “First, in the usual stochastic programming model, the controls

cannot influence the distribution of future states (see Olsen [01-03J], Rockafellar and Wets

[R3-R4J], and the references contained therein). As a result, the model does not include as

special cases many important problems such as, for example, the classical linear quadratic

stochastic control problem.”
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Convex stochastic optimization

Example (Optimal investment)

Let nt = d for all t and

h(x, ω) = V

(
c(ω)−

T−1∑
t=0

xt ·∆st+1(ω)

)

where s is an adapted price process and V : R → R is convex. Then h is
a normal integrand and the problem becomes

minimize
x∈N

EV

(
c−

T−1∑
t=0

xt ·∆st+1

)

which is the problem of optimal investment with liability c ∈ L0. This
was studied by [Rásonyi and Stettner, 2005] for c ∈ L∞.
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Convex stochastic optimization

Example (Semistatic hedging)

Consider the problem

minimize EV

(
c−

T−1∑
t=0

xt ·∆st+1 − c̄ · x̄+ S0(x̄)

)
over x ∈ N , x̄ ∈ RJ̄ ,

where J̄ is a finite set of quoted assets with payouts c̄ = (c̄j)j∈J̄ . The function S0 gives

the cost of buying a portfolio in RJ̄ at the best available market prices. This fits the
general format with the time index running from −1 to T − 1, F−1 = {Ω, ∅}, x−1 = x̄
and

h(x, ω) = V

(
c(ω)−

T−1∑
t=0

xt ·∆st+1(ω)− c̄(ω) · x̄+ S0(x̄), ω

)
.
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Convex stochastic optimization

Example (Optimal investment in illiquid markets)

Let

h(x, ω) =

{∑T
t=0 Vt(St(∆xt, ω) + ct(ω)) if xt ∈ Dt(ω),

+∞ otherwise

where

St : Rd × Ω → R is such that St(·, ω) are convex with St(0, ω) = 0 and St(x, ·)
are Ft-measurable,

ω 7→ Dt(ω) is Ft-measurable with Dt(ω) closed convex and 0 ∈ Dt(ω),

Vt : R → R are convex.

Then h is a normal integrand and the problem becomes

minimize E

T∑
t=0

Vt(St(∆xt) + ct) overx ∈ ND.

This was studied in [Pennanen, 2014] and [Pennanen and Perkkiö, 2018].
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Dynamic programming

An extended real-valued random variable X is quasi-integrable if either X+ or
X− is integrable.

Given a quasi-integrable X and a σ-algebra G ⊆ F , there is an a.s. unique
G-measurable random variable EGX (the G-conditional expectation of X) such
that

E
[
α(EGX)

]
= E [αX] ∀α ∈ L∞

+ (Ω,G, P ).

Definition

Given a normal integrand h, a G-normal integrand EGh is a G-conditional expectation
of h if

(EGh)(x) = EG [h(x)] a.s.

for all x ∈ L0(G) such that h(x) is quasi-integrable.

If h(x, ω) = x · v(ω) for a v ∈ L1, then (EGh)(x, ω) = x · [EGv](ω).

The conditional expectation obeys natural calculus rules.

If EGX can be expressed in terms of a probability kernel then the same applies to
EGh.
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Dynamic programming

Denote xt = (x0, . . . , xt), n
t = n0 + · · ·+ nt, Et = EFt .

An adapted sequence (ht)
T
t=0 of normal integrands ht : Rnt × Ω → R

solves the Bellman equations for h if

h̃T := h,

ht := Eth̃t,

h̃t−1(x
t−1, ω) := inf

xt∈Rnt
ht(x

t−1, xt, ω)

(BE)

for t = T, . . . , 0.

Provides dimension reduction (much more so with special structures),
optimality conditions, computational techniques, existence of
solutions, . . .

The above was analyzed by [Evstigneev, 1976] and [Rockafellar and
Wets, 1976] in the case of uniformly compact feasible sets.
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Dynamic programming

Theorem (“Verification theorem”)

Assume that h is bounded from below, (SP) is feasible and that the
Bellman equations (BE) admit a solution (ht)

T
t=0. Then an x̄ ∈ N solves

(SP) if and only if

x̄t ∈ argmin
xt∈Rnt

ht(x̄
t−1, xt) a.s. t = 0, . . . , T. (1)

Remark

In the setting of Theorem 8,

ht(x
t) = essinf

x̃∈N

{
Eth(x̃) | x̃t = xt

}
∀xt ∈ L0(Ft)

Compare with [Rásonyi and Stettner, 2005].
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Dynamic programming

Theorem (Existence of solutions)

Assume that h is convex, bounded from below and that

L := {x ∈ N | h∞(x) ≤ 0}

is a linear space. Then (BE) has a unique solution (ht)
T
t=0, where each ht is a convex

normal integrand.

Here h∞ (recession function of h) is the normal integral given by

h∞(x, ω) := sup
λ>0

h(x̄+ λx)− h(x̄)

λ
.

Both theorems extend to integrands h not necessarily bounded from below. In the
context of optimal investment, a sufficient condition is that the utility function has
reasonable asymptotic elasticity.

In the classical optimal investment model, the linearity condition is the
no-arbitrage condition. In the presence of transaction costs, it becomes the
robust no-arbitrage condition.
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Dynamic programming

Example (Stochastic control)

Consider the problem

minimize E

[
T∑
t=0

Lt(Xt, Ut)

]
over (X,U) ∈ N ,

subject to ∆Xt = AtXt−1 +BtUt−1 +Wt t = 1, . . . , T

(OC)

and assume that Lt are bounded from below and that

{(X,U) ∈ N |
T∑
t=0

L∞
t (Xt, Ut) ≤ 0, ∆Xt = AtXt−1 +BtUt−1}

is a linear space (as e.g. in linear-quadratic control).
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Dynamic programming

Example (Stochastic control, continued)

Then the functions Jt : RN × Ω → R and It : RN+M × Ω → R defined recursively by

IT+1 := 0

Jt(Xt) := inf
Ut∈RM

(Lt + EtIt+1)(Xt, Ut),

It(Xt−1, Ut−1) := Jt(Xt−1 +AtXt−1 +BtUt−1 +Wt),

are convex normal integrands, optimal controls exists and are characterized by

Ut ∈ argmin
Ut∈RM

{Lt(Xt, Ut) + (EtIt+1)(Xt, Ut)}.

Note that, if Lt are deterministic and At, Bt,Wt are independent of Ft−1, then Jt are
deterministic and optimal control is a function of the state only.
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Dynamic programming

Example (Financial mathematics, continued)

Consider again the optimal investment problem and assume that

1 there exists a martingale measure Q ≪ P such that, for y := dQ/dP , yu ∈ L1

and EV ∗(λiy) < ∞ for two different λi ∈ R
2 the set

L = {x ∈ N |
T−1∑
t=0

zt ·∆st+1 ≥ 0, zt ∈ D∞
t P -a.s.}

is linear.

Then optimal solutions exist.

If V has reasonable asymptotic elasticity then condition 1 holds if it holds
merely for one λ (this means that the dual problem is feasible; see below).

In the absence of portfolio constraints, linearity of L is equivalent to the classical
no-arbitrage condition.
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Pennanen and Perkkiö Duality in convex stochastic optimization May 21, 2022 19 / 41



Conjugate duality

Conjugate duality studies parametric optimization problems of the form

minimize F (x, u) over x ∈ X, (P)

where the parameter u takes values in a locally convex vector space U which is in
separating duality with another LCTVS Y . If F is convex on X × U , then

the optimum value φ(u) is convex on U ,

the associated Lagrangian

L(x, y) = inf
u∈U

{F (x, u)− ⟨u, y⟩}

is convex-concave on X × Y ,

the conjugate of φ can be expressed as

φ∗(y) := sup
u∈U

{⟨u, y⟩ − φ(u)} = − inf
x∈X

L(x, y).
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Conjugate duality

If φ is lower semicontinuous (lsc), then φ = φ∗∗ so the optimum value
equals that of the dual problem:

maximize ⟨u, y⟩ − φ∗(y)

A y ∈ Y solves the dual if and only if y ∈ ∂φ(u), i.e.

φ(u′) ≥ φ(u) + ⟨u′ − u, y⟩ u′ ∈ U.

In this case an x ∈ X solves (P) if and only if (x, y) is a saddle point of
(x, y) 7→ L(x, y)− ⟨u, y⟩.

The saddle-point condition means that (0, y) ∈ ∂F (x, u), or equivalently,
that (x, y) satisfies the KKT-conditions

0 ∈ ∂xL(x, y) and u ∈ ∂y[−L](x, y).

See [Rockafellar, 1974] for details and applications.

Pennanen and Perkkiö Duality in convex stochastic optimization May 21, 2022 21 / 41



Conjugate duality

The above covers all other convex optimization duality frameworks:
LP duality, Lagrangian duality, Hamiltonian mechanics, convex
optimal control, mass transportation and its generalizations, . . .

Numerical algorithms are often based on the saddle-point formulation
(interior point and gradient methods for constrained problems).

The dual representation gives lower bounds for the optimum value
much as in [Davis and Karatzas, “A deterministic approach to
optimal stopping”, 1994] or [Rogers, “Monte Carlo valuation of
American options”, 2002] for optimal stopping problems.
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CSO duality

We will study the parametric stochastic optimization problem

minimize Ef(x, z, u) :=

∫
Ω

f(x(ω) + z(ω), u(ω), ω)dP (ω) overx ∈ N ,

where f is a convex F-normal integrand on Rn × Rm and the parameters (z, u)
vary in spaces X and U of Rn- and Rm-valued random variables.

In many applications (and in [Rockefellar, 1974]), the parameter u is
introduced only for the purposes dualization but, in others, it has practical
significance.

In problems of financial mathematics, u is typically the payout of a claim.

In stochastic control, u is the additive noise.

Note that the space N = {(xt)Tt=0 |xt ∈ L0(Ω,Ft, P ;Rnt)} is not locally
convex so we are slightly outside Rockafellar’s framework. It turns out that
the special structure of the problem allows us to get away with this.
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CSO duality
In order to embed this to the conjugate duality framework, we assume that

X ⊂ L0(Ω,F , P ;Rn) is a LCTVS in separating duality with another LCTVS
V ⊂ L0(Ω,F , P ;Rn) under the bilinear form

⟨z, p⟩ := E[z · p].

U ⊂ L0(Ω,F , P ;Rm) is a LCTVS in separating duality with another LCTVS
Y ⊂ L0(Ω,F , P ;Rm) under the bilinear form

⟨u, y⟩ := E[u · y].

all the spaces are solid and contain L∞ (covers Lp, Orlicz, Lorentz, . . . ).

Let X⊥
a := {p ∈ V | ⟨x, p⟩ = 0 ∀x ∈ X ∩N}.

Theorem
If domEf ∩ (X × U) ̸= ∅, the dual problem can be written as

maximize ⟨ū, y⟩ − Ef∗(p, y) over (p, y) ∈ X⊥
a × Y. (D)

The variable p ∈ X⊥
a describes the “price of information”; see [Rockafellar and Wets,

1976], [Back and Pliska, 1987], [Davis, 1992].
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CSO duality

Theorem

If domEf ∩ (X ×U) ̸= ∅ and (P) and (D) are feasible, then following are
equivalent

1 x solves (P), (p, y) solves (D) and inf (SP) = sup (D),

2 x is feasible in (SP), (p, y) is feasible in (D) and

(p, y) ∈ ∂f(x, ū) P -a.s. (2)

3 x is feasible in (SP), (p, y) is feasible in (D) and

p ∈ ∂xl(x, y), ū ∈ ∂y[−l](x, y) P -a.s.

where l is the random saddle-function

l(x, y, ω) := inf
u∈Rm

{f(x, u, ω)− u · y}.
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CSO duality

Clearly, the optimum value of the dual problem

maximize ⟨ū, y⟩ − Ef∗(p, y) over (p, y) ∈ X⊥
a × Y. (D)

equals that of the reduced dual

maximize ⟨ū, y⟩ − g(y) over y ∈ Y, (rD)

where
g(y) := inf

p∈X⊥
a

Ef∗(p, y).

A pair (p, y) solves (D) iff y solves (rD) and p attains the infimum in
g(y).

The infimum in the definition of g can be found analytically in many
applications.
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CSO duality

Consider again the problem

minimize Ef0(x) over x ∈ N ,

subject to H(x) ∈ K
(MP )

If domEf ∩ (X × U) ̸= ∅, then the dual problem can be written as

maximize E inf
x∈Rn

{f0(x) + y ·H(x)− x · p} over (p, y) ∈ X⊥
a × Y

subject to y ∈ K∗ a.s.
(DMP )

Theorem
If domEf ∩ (X ×U) ̸= ∅ and (MP ) and (DMP ) are feasible, then the following are equivalent

1 x solves (MP ), (p, y) solves (DMP ) and inf (MP ) = sup (DMP ),

2 x is feasible in (MP ), (p, y) is feasible in (DMP ) and

p ∈ ∂x[f0 + y ·H](x),

H(x) ∈ K, y ∈ K∗, y ·H(x) = 0

almost surely.
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CSO duality

Theorem (Optimal stopping)

The optimum value of the optimal stopping problem

maximize
τ∈T

ERτ

equals that of
minimize

y∈M
y0 subject to y ≥ R,

where M is the set of martingales. The optimal τ ∈ T and y ∈ M are
characterized by y ≥ R and yτ = Rτ .
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CSO duality

minimize E

[
T∑

t=0

Lt(Xt, Ut)

]
over (X,U) ∈ N ,

subject to ∆Xt = AtXt−1 +BtUt−1 +Wt t = 1, . . . , T

(OC)

Theorem (Optimal control)

If domEf ∩ X × U ̸= ∅, the dual problem control problem can be written as

maximize E

[
T∑

t=1

Wt · yt −
T∑

t=0

L∗
t (pt − (∆yt+1 +A∗

t+1yt+1, B
∗
t+1yt+1))

]
over (p, y) ∈ X⊥

a × Y.

(DOC)

If, in addition, both (OC) and (DOC) are feasible, then the following are equivalent

1 (X,U) solves (OC), (p, y) solves (DOC) and there is no duality gap,

2 (X,U) ∈ N , (p, y) ∈ X⊥
a × Y and, almost surely for all t,

pt − (∆yt+1 +A∗
t+1yt+1, B

∗
t+1yt+1) ∈ ∂Lt(Xt, Ut),

∆Xt = AtXt−1 +BtUt−1 +Wt.
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CSO duality

The scenariowise optimality conditions in OC mean that (X,U) satisfies the system equations
and that

Ut ∈ argmin
Ut∈RM

{Ht(Xt, Ut, yt+1)− (Xt, Ut) · pt},

−∆yt+1 ∈ ∂XH̄t(Xt, pt, yt+1),

where the Hamiltonian Ht is defined by

Ht(Xt, Ut, yt+1) := Lt(Xt, Ut) + yt+1 · (At+1Xt +Bt+1Ut).

and
H̄t(Xt, pt, yt+1) := inf

Ut∈RM
{Ht(Xt, Ut, yt+1)− (Xt, Ut) · pt}.

This is the stochastic maximum principle for general convex control problems.

The optimal costate y thus solves a backward stochastic difference inclusion.

BSDEs were originally introduced by [Bismut, 1973] who analyzed continuous time
models in Rockafellar’s duality framework.

It can be shown that an optimal costate y is also a subgradient of the cost-to-go function
in dynamic programming.
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CSO duality

Remark (Reduced dual)

Assume that each Lt is Ft-measurable and that each ELt is proper on § × C.
Then, under mild conditions on the spaces, the optimum value of the dual
problem (DOC) equals that of the reduced dual problem

maximize
y∈Ya

E

[
T∑

t=1

Wt · yt −
T∑

t=0

[L∗
t (−Et(∆yt+1 +A∗

t+1yt+1, EtB
∗
t+1yt+1))]

]
.

A pair (p, y) solves (DOC) if and only (Etyt)
T
t=0 solves the reduced dual and

pt = (∆yt+1 +A∗
t+1yt+1, B

∗
t+1yt+1)− Et(∆yt+1 +A∗

t+1yt+1, B
∗
t+1yt+1).

If (DOC) has a solution, then an x is optimal if and only if it is feasible and there
is a y feasible in the reduced dual such that

−Et(∆yt+1 +A∗
t+1yt+1, B

∗
t+1yt+1) ∈ ∂Lt(Xt, Ut)

almost surely.
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CSO duality

minimize EV

(
c−

T−1∑
t=0

xt ·∆st+1 − c̄ · x̄+ S0(x̄)

)
over x ∈ N , x̄ ∈ RJ (SSH)

Theorem
If S0 is positively homogeneous, the dual problem can be written as

maximize E [cy − V ∗(y)] over p ∈ X⊥
a , y ∈ Y

subject to p−1 + yc̄ ∈ y domS∗
0

pt + y∆st+1 = 0 t = 0, . . . , T.

(DSSH)

If both (SSH) and (RDSSH) are feasible, then the following are equivalent

1 x solves (SSH), (p, y) solves (RDSSH) and there is no duality gap,

2 x ∈ N , (p, y) ∈ X⊥
a × Y and, almost surely

p−1 + yc̄ ∈ ∂(yS0)(x),

pt + y∆st+1 = 0 t = 0, . . . , T,

y ∈ ∂V

(
c−

T−1∑
t=0

xt ·∆st+1 − c̄ · x̄+ S0(x̄)

)
.

Pennanen and Perkkiö Duality in convex stochastic optimization May 21, 2022 32 / 41



CSO duality

Minimizing over p ∈ X⊥
a gives the reduced dual

maximize E [cy − V ∗(y)] over y ∈ Y
subject to E[yc̄] ∈ E[y] domS∗

0 ,

Et[y∆st+1] = 0 t = 0, . . . , T.

(RDSSH)

If Ey > 0, the constraints can be written as

EQc̄ ∈ domS∗
0 ,

EQ
t [∆st+1] = 0

where dQ/dP := y/Ey. If infinite quantities are available at the best
quotes, then domS∗

0 is the product of the bid-ask intervals.
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CSO duality

Besides the above examples, one obtains e.g.

extensions to nonlinear and constrained models of financial markets as
well as to Kabanov’s currency market model.
extensions of the classical results of Rockafellar and Wets.
that in optimal control, the dual solutions are the subgradients of the
cost-to-go functions.
...

While the above is almost a mechanical application of Rockafellar’s
conjugate duality, more involved arguments are required in
establishing

existence of primal solutions and the absense of a duality gap (Ch 4).
existence of dual solutions (Ch 5).

Conjugate duality can be applied in continuous-time models too.
[Bismut, 1973] studied a special optimal control format in CD
without establishing the existence of solutions.
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Closedness criteria

The above expressions for φ∗∗ provide dual representations of the
optimal value φ provided φ is proper and lower semicontinuous
(lsc), i.e.

lim inf
ν→∞

φ(uν) ≥ φ(u)

whenever uν → u in U .
The traditional “direct method” assumes that Ef is jointly lsc and
Ef(·, u) is inf-compact uniformly in u.

In e.g. financial models, the topological inf-compactness condition
often fails but there is a measure theoretic counterpart (Komlós
theorem) that works well in N .
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Closedness criteria

Theorem (Komlós)

If (xν)∞ν=1 ⊂ L0(Ω,F , P ;Rn) is almost surely bounded in the sense that

sup
ν

|xν(ω)| <∞ P -a.s.

then there is a sequence of convex combinations x̄ν ∈ co{xµ |µ ≥ ν} that
converges almost surely in L0.

The following infinite-dimensional version of Theorem 8.4 from Convex
Analysis gives a sufficient condition for the boundedness condition in the
dynamic setting.

Theorem

Let C : Ω ⇒ Rn be closed convex-valued and F-measurable. If
{x ∈ N |x ∈ C∞ a.s.} = {0}, then every sequence in
{x ∈ N |x ∈ C a.s.} is almost surely bounded.

The lower bound has been relaxed in [Perkkiö, 2014].
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Closedness criteria

Given (x̄, ū) ∈ Rn × Rm such that f(x̄, ū, ω) <∞, let

f∞(x, u, ω) := lim
α↗∞

f(x̄+ αx, ū+ αu, ω)− f(x̄, ū, ω)

α
.

Theorem
Assume that f is bounded from below and that

{x ∈ N| f∞(x(ω), 0, ω) ≤ 0 a.s.}

is a linear space. Then
φ(u) = inf

x∈N
Ef(x, u)

is σ(U ,Y)-lsc and the inf is attained for every u ∈ U .

The lower bound has been relaxed by [Perkkiö, 2014].
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Closedness criteria

Example (Optimal stopping)

When

f(x, u, ω) =

{
−
∑T

t=0 xtZt(ω) if x ≥ 0 and
∑T

t=0 xt ≤ u,

+∞ otherwise,

we have f∞ = f and

{x ∈ N| f∞(x, 0) ≤ 0 a.s.} = {0},

so the linearity condition is always satisfied.
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Closedness criteria

Example (Optimal investment)

When

f(x, u, ω) =

{
V
(
u−

∑T−1
t=0 xt ·∆St+1(ω)

)
if xt ∈ Dt(ω),

+∞ otherwise

we get

f∞(x, u, ω) =

{
V∞

(
u−

∑T−1
t=0 xt ·∆St+1(ω)

)
if xt ∈ D∞

t (ω),

+∞ otherwise.

If v is nonconstant and Dt(ω) = RJ , the linearity condition becomes the
no-arbitrage condition

x ∈ N :
∑

xt ·∆St+1 ≥ 0 =⇒
∑

xt ·∆St+1 = 0.

Example

With transaction costs, we get the robust no-arbitrage condition
introduced by [Schachermayer, 2004].
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Closedness criteria

The linearity condition may hold even under arbitrage.

Example

It holds if S∞
t (x, ω) > 0 for x /∈ RJ

−.

Example

In [Çetin and Rogers, 2007] with

St(x, ω) = x0 + st(ω)ψ(x
1)

one has S∞
t (x, ω) = x0 + st(ω)ψ

∞(x1). When inf ψ′ = 0 and supψ′ = ∞
we have ψ∞ = δR− , so the condition in Example 27 holds.

Example

If St(·, ω) = st(ω) · x for a componentwise strictly positive price process s
and D∞

t (ω) ⊆ RJ
+ (infinite short selling is prohibited) then linearity

condition holds.

Pennanen and Perkkiö Duality in convex stochastic optimization May 21, 2022 40 / 41



Summary

Convex stochastic optimization unifies many models in stochastic
control, operations research and mathematical finance.

The minimalist structure yields simplifications and extensions of
existing techniques e.g. on existence, duality, optimality conditions
and numerics.

A similar approach works also with continuous-time models but the
mathematics gets more complicated/interesting:

path spaces?
stochastic integrals?
admissibility?

Pennanen and Perkkiö Duality in convex stochastic optimization May 21, 2022 41 / 41


	Convex stochastic optimization
	Dynamic programming
	Duality

