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The finite sample guarantee problem

Suppose that P is a probability measure and γ(P) is some
parameter. In Statistics and also in Stochastic Optimization we
replace the difficult problem 1 to find γ(P) by using a sample. Let
P̂n the empirical distribution and let γ(P̂n) be our empirical
estimate. In order to give the quality of this estimate, we use
confidence sets Ĉn around γ(P̂n) such that P{γ(P) /∈ Ĉn} is small.
Given an error level β, confidence sets typically hold this level only
asymptotically

lim
n→∞

P{γ(P) /∈ Ĉn} ≤ β.

but noting is said for finite and fixed n. If

P{γ(P) /∈ Ĉn} ≤ β

we call this a confidence set with finite sample guarantee.

1This may be difficult per se (as in stochastic optimization) or P is
unavailable (as in statistics)
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The basic problem: Stochastic Optimization

max{EP(Q(x , ξ) : x ∈ X, x ◁ F}

where
F = (F0,F1, . . . ,FT ) is a filtration on some probability space,
ξ is an F-adapted stochastic scenario process,
P is the probability law of the scenario process,
x is the F-adapted stochastic decision process.
We solve such a problem by a sampling approach and are
interested in finite sample guaranteed bounds for the optimal value.
Notice that each feasible decision process x gives a lower bound.
There are in principle 3 ways to find good upper bounds

▶ ambiguity extension

▶ duality approach

▶ guaranteed over-estimation
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Ambiguity extension

Let dl be the nested distance for adapted stochastic processes
introduced by Pflug and Pichler (2012).
If P̂n is a sampled approximation of the underlying scenario process
and if we find a bound ϵ such that

P{dl(P̂n,P) ≤ ϵ} ≥ 1− β

(n has to be large enough) then solving the extended problem

max
x

max
dl(P̂n,P)≤ϵ

{EP(Q(x , ξ) : x ∈ X, x ◁ F}

gives a guaranteed upper bound with error level β.
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Duality approach

We illustrate this approach for the optmal stopping problem, where
the decision is binary (to stop or not to stop). The goal is to find
an F-adapted stopping time τ such that for a stochastic reward
process (C0,C1, . . . ,CT ) the expectation E(Cτ ) of the process
stopped at τ process is maximal:

V0 := sup{E(Cτ ) : τ ◁ F}

Notice that if F̄ = (FT , . . . ,FT ) is the clairvoyant filtration, then

sup{E(Cτ ) : τ ◁ F̄} = E(sup
t

Ct).

Here is what is well known:
Let MF be the family of all F-martingales. By the optional
sampling theorem for (Mt) ∈ MF and all F stopping times τ

E[Cτ ] = M0 + E[Cτ −Mτ ].
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The duality Theorem

Theorem.

V0 = inf{M0 + E[sup
t
(Ct −Mt)] : (Mt) ∈ MF}.

Thus any (Mt) ∈ MF leads to an upper bound. Moreover, the
optimal dual martingale process M∗

t can be explititly given: Let
(Vt) be the smallest supermartingale dominating (Ct) (this is
called Snell’s envelope). It is defined in a backward recursive way:

VT = CT ,

Vt = max(Ct ,E[Vt+1|Ft ]).

Then the (typically unavailable) optimal dual process is

M∗
t = V0 +

t∑
s=1

(Vs − E(Vs |Fs−1)).
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Information relaxation

If G = (G0,G1, . . . ,GT ) is a relaxation of the filtration F, i.e.
Gt ⊇ Ft , then trivially

sup{E(Cτ ) : τ ◁ F} ≤ sup{E(Cτ ) : τ ◁G} (1)

If M is any F martingale, then sup{M0 + E(Cτ −Mτ ) : τ ◁G} is a
valid upper bound and M0 + E(supt(Ct −Mt)) is a typically worse
upper bound. Only if M∗ is the optimal dual martingale process,
then all of the above inequalities become eqalities and the upper
bounds coincide, meaning that it is allowed to take even the
clairvoyant filtration F̄ as information structure without increasing
the bound.
We call any G- martingale (Mt −M0) a penalty function for the
information relaxation.
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Pricing of American Options as a stopping problem

We assume now that the filtration is generated by a Markovian
process S0,S1, . . . ,ST such that the filtration F is generated by
this process: Ft = σ(St). The payment process is
C0 = c0(S0),C1 = c1(S1), . . . ,CT = cT (ST ). As before, we want
to solve

sup{E(Cτ ) : τ ◁ F}

We form the backward recursion for the value function

VT (ST ) = cT (ST )

Vt(St) = max{ct(St),E[Vt+1(St+1|St)]}

Then V0(S0) is the optimal value of the stopping problem.
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The Longstaff-Schwartz sampling method

Let S
(i)
0 , . . . ,S

(i)
T , i = 1, . . . , n be n independent samples from

the process (St).
We form the ”approximate” pathwise backward recursion

ṼT (S
(i)
T ) = cT (S

(i)
T T )

Ṽt(S
(i)
t ) =

{
ct(S

(i)
t ) if ct(S

(i)
t ) ≥ Ψ̃t(S

(i)
t )

Ṽt+1(S
(i)
t+1) if ct(S

(i)
t ) < Ψ̃t(S

(i)
t )

where Ψ̃t(S
(i)
t ) is an approximation of E(Ṽt+1(St+1)|S (i)

t ). In

order to find Ψ̃t(S
(i)
t ), we collect the pairs

(xi = S
(i)
t , yi = Vt+1(S

(i)
t+1))

and find a parametric or nonparametric regression estimate Ψ̃t ∈ F
which approximates E(y |x). Here F is an appropriate class of
functions. The final value Ṽ0(S0) is a lower bound for the true
option value.
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How to construct martingales for upper bounds?

In principle, for every process Zt ,

Mt = Z0 +
t∑

s=1

Zs − E(Zs |Gs−1).

is an F martingale. Ideally Zt = Vt , and F = G i.e.

M∗
t = V0 +

t∑
s=1

Vs − E(Vs |Fs−1)

but one may try to construct an approximant Ṽ of V and and find
an estimate for Ψt(St) ∼ E(Ṽt+1|Gt). The penalty G-martingale
(M̃t) is then

M̃t = max(Ct ,Ψt+1(St)− E(max(Ct ,Ψt+1(St)|Gt))

However, one needs extra forward samples for each sample S
(i)
t

which increases much the complexity.
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The overestimation method for Longstaff-Schwartz

In order to find an upper bound, we do the very similar recursive
procedure

ṼT (S
(i)
T ) = cT (S

(i)
t T )

Ṽt(S
(i)
t ) =

{
ct(S

(i)
t ) if ct(S

(i)
t ) ≥ ˜̃Ψt(S

(i)
t )

˜̃Ψt(S
(i)
t ) if ct(S

(i)
t ) < ˜̃Ψt(S

(i)
t )

where ˜̃Ψt(x) is a guaranteed majorant of E(Ṽt+1(St+1)|S (i)
t = x).

In order to find ˜̃Ψt , we collect the pairs

(xi = S
(i)
t , yi = Vt+1(S

(i)
t+1))

and find a guaranteed majorant of the regression function, i.e. a
˜̃Ψt ∈ F which majorizes E(y |x) for all x with a given error level β.
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Guaranteed majorant regression

Let (Xi ,Yi ), i = 1, . . . , n be a two-dimensional sample, stemming
from a bivariate distribution, such that

E(Y |X = x) = f0(x).

Our goal is to find an estimate f̂n(x) such that

P{f̂n(x) ≥ f0(x) for all x } ≥ 1− β

Notice that we want this majorization to hold for all x and not
only for the sampled Xi .
This topic is also treated by Alois Pichler in his talk on Monday. I
am indebted to him for the idea to use the RKHS approach.
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Reproducing Kernel Hilbert Spaces (RKHS)

Let k(x , y) be a kernel function on R× R such that

▶ k(x , y) = k(y , x)

▶ k(x , x) = 1; 0 ≤ k(x , y) ≤ 1

▶
∑

i ,j vivjk(xi , xj) ≥ 0 for all vi , xi (k is positive semidefinite)

(for instance k(x , y) = exp(−α(x − y)2)).
Then the RKHS H is generated by the functions

x 7→
∑
i

vik(xi , x)

with inner product

<
∑
i

vik(xi , x),
∑
j

wik(yi , x) >k=
∑
i ,j

viwjk(xi , yj)

and is the closure of these functions under ∥f ∥k =
√
< f , f >k .
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Basic properties

▶ Fundamental norm inequality: ∥f ∥∞ ≤ ∥f ∥k
▶ Evalutation functional: < k(x , ·), f (·) >k= f (x) for all x and

all f ∈ H.

▶ The operator K with (Kf )(x) =
∫
k(x , y) f (y) dP(y) maps H

to H and is self adjoint (< Kf , g >k=< f ,Kg >k) and
positive semidefinite (< Kf , f >k≥ 0).

▶ Let X = (X1, . . . ,Xn) be an i.i.d. sample from P and let HX

be the Hilbert subspace generated by the functions
k(x ,Xi ), i = 1, . . . , n. If P̂ is the empirical distribution
(P̂n = 1

n

∑
i δXi

), then the operator K̂n with

(K̂nf )(x) =

∫
k(x , y) f (y) dP̂n(y) =

1

n

∑
i

f (Xi )k(x ,Xi )

maps H to HX and is self adjoint and positive semidefinite.
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The smoothing operator

Let f ∈ H. Then the smoothed version Sλ(f ) is the argument
minimum of

g 7→ ∥f−g∥22+λ∥g∥2k = ∥f−g∥22+λ

∫∫
k(x , y) g(x) g(y) dP(x)dP(y).

The solution of this is

g = Sλ(f ) = [K + λI ]−1Kf

where I is the identity. K has only nonnegative eigenvalues, say
(µi ), and hence K + λI is always invertible. Moreover, the
eigenvalues of [K + λI ]−1K are µi/(µi + λ) implying that
∥[K + λI ]−1K∥k ≤ 1. Moreover,

∥Sλ(f )− f ∥k = λ∥[K + λI ]−1f ∥k ≤ λ∥w∥k

for f = Kw .
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The emprirical smoothing operator

The empirical smoothing operator is the argument minimum of
solution of

g 7→ ∥f − g∥22 +
∫∫

k(x , y) g(x) g(y) dP̂n(x)dP̂n(y)

= ∥f − g∥22 +
1

n2

∑
i

k(Xi ,Xj) g(Xi ) g(Xj)

The solution is

g(x) = Ŝλ,n(f ) =
n∑

i=1

vik(x ,Xi )

where the vector v = (v1, . . . , vn)
⊤ satisfies

v = [Ǩn + λI ]−1 · (f (X1, . . . , f (Xn))
⊤

with Ǩn being the [n× n] matrix with entries Ǩn(i , j) =
1
nk(Xi ,Xj).

Notice that Ŝλ,n(f ) ∈ HX = span {k(x ,Xi ); i = 1, . . . , n}.
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The regression estimate

Let (Xi ,Yi )i=1,...,n be the observed pairs. Then the regression
estimate is

f̂n(x) =
∑
i

vik(x ,Xi )

where the vector v = (v1, . . . , vn)
⊤ satisfies

v = [Ǩn + λI ]−1 · (Y1, . . . ,Yn)
⊤.

If f0 is the true regression function, then set

Yi = f0(Xi ) + ϵi

where the ϵ’s are conditionally independent given the Xi ’s.
Therefore

f̂n =
∑
i

(wi + zi )k(x ,Xi ) = m̂n + R̂n

with
w = [Ǩn + λI ]−1 · (f0(X1), . . . , f0(Xn))

⊤,

z = [Ǩn + λI ]−1 · (ϵ1, . . . , ϵn)⊤.
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The main part m̂n =
∑

i wik(x ,Xi)

Let f0(x) =
∫
k(x , y)w0(y)dP(y). Then

m̂n(x) =
1

n

∑
j

([Ǩn + λI ]−1Kw0(X ))jk(x ,Xj).

Let

f̄0,n =
1

n

∑
i

k(x ,Xi )w0(Xi ) =

∫
k(x , y)w0(y)dP̂n(y).

Then f̄0,n ∈ HX .

∥f0 − f̄0,n∥∞ = ∥
∫

k(x , y)w0(y)dP(y)−
∫

k(x , y)w0dP̂n(y)∥k

= ≤ [L(k)∥w0∥∞ + L(w0)]dW (P̂n,P)

where L(·) are Lipschitz constants and dW (P̂n,P) is the
Wasserstein distance between P and P̂n.
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∥m̂n(x)− f̄0,n∥∞ ≤ λ∥w0∥k + 1l⊤[K̂n + λI ]−1Ǩn[Ǩn + λI ]−1]1l×
×[L(k)∥w0∥∞ + L(w0)]dW (P̂n,P).

and hence

∥m̂n(x)− f0(x)∥∞ ≤ λ∥w0∥k
+ (1 + 1l⊤[K̂n + λI ]−1Ǩn[Ǩn + λI ]−1]1l)

× [L(k)∥w0∥∞ + L(w0)]
2d2

W (P̂n,P)

= λ∥w0∥k + c(Ǩn, λ, P̂n,P)
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The error part R̂n

For the error part R̂n , we have

R̂λ,n(x) =
1

n

∑
j

([K̂n + λI ]−1ϵ)jk(x ,Xj)

with ϵ = (ϵ1, . . . , ϵn)
⊤. Conditioned on the sample X and

assuming that E(ϵi ) ≤ σ2 one gets

EX

[
∥R̂λ,n(.)∥2k

]
≤ 1

n2

∑
i ,j

k(Xi ,Xj)e
⊤
i [Ǩn + λI ]−1 σ2 [Ǩn + λI ]−1ej

=
σ2

n
tr [λǨn + λI ]−1Ǩn[Ǩn + λI ]−1)

≤ σ2

λn
κ(Ǩn, λ)

where κ(K̂n, λ) = tr(λ[K̂n + λI ]−1Ǩn[Ǩn + λI ]−1).
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Suppose that K̂n has eigenvalues µ̂i . Then in the worst case

κ(K̂n, λ) =
∑
i

λµ̂i

(λ+ µ̂i )2
≤ 1/λ

∑
i

µ̂i = 1/λ,

since
∑

i µ̂i = tr K̂n = 1. However, if the kernel functions are
chosen in the right way, then κ(K̂n, λ)) is O(1) as λ → 0, since
only a few eigenvalues are positive.
Consequently also integrating over all samples X = (Xi ),

E
[
∥R̂λ,n(.)∥2k

]
≤ σ2

λn
κ(Ǩn, λ).

and

P
{
∥R̂λ,n(.)∥2k ≥ η

}
≤ E

[
∥R̂λ,n(.)∥2k

]
/η2 ≤ σ2

η2λn
κ(Ǩn, λ).
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From above we have for the main part

∥m̂n(x)− f0(x)∥∞ ≤ λ∥w0∥k + c(Ǩn, λ, P̂n,P).

Notice that

P{dW (P̂n,P) > ϵ} ≤ exp(−λ

2
nϵ2)

(Bolley et al. 2007) or we use a fixed design for the Xi .
Now choose β as the error for the significance level. Let

η =
σ2κ(Ǩn, λ)

nλβ
.

Then

P{f0(x) ≤ f̂n(x) + λ∥w0∥k + c(Ǩn, λ, P̂,P) + η for all x } ≥ 1− β.
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Example

n = 1000

k(x , y) = exp(−20 · (x − y)2)

λ = 0.01

σ = 0.2

β = 0, 01
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The matrix Ǩ has 1000 eigenvalues, but only 17 of them are larger
than 10−4.
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What needs to be done

▶ Using the guaranteed overestimation in Longstaff-Schwartz
regression at each time step t.

▶ Relaxing the conditions about Lipschitz functions to
Fortet-Mourier functions:

FMp = {f : ∃L s.t. |f (u)| ≤ L(max(1, |u|)p);
|f (u)− f (v)| ≤ L|u − v |max(1, |u|, |v |)p−1} (2)

The smallest L satifying (2) is called the Fortet-Mourier
constant. We may replace Wasserstein distance by the
Fortet-Mourier distance.

▶ Comparing this with the other methods for getting upper
bounds.
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