
Rockafellian Relaxation in Optimization
under Uncertainty:

Asymptotically Exact Formulations

Johannes O. Royset
Operations Research Department

Naval Postgraduate School, Monterey, California

with Louis Chen and Eric Eckstrand

Supported by AFOSR
Erice, May 20, 2022

1 / 24



Distributional ambiguity

minimize
x∈Rn

EP

[
g(ξ, x)

]

If P is replaced by approximating Pν , would the corresponding
solutions be close?

▶ statistical noise; Pν empirical distribution

▶ sensitivity analysis

▶ upweighing, influence functions, adversarial attacks

▶ corruption, contamination, outliers
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MNIST (numbers) corrupted with Chars74k (letters)
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Lack of convergence of expectations

Let g(ξ, x) = ξx + 1
2(1− x)

minimize
x∈[0,1]

EP

[
g(ξ, x)

]
P assigns probability 1 to ξ = 0

Unique minimizer at 1

minimize
x∈[0,1]

EPν

[
g(ξ, x)

]
Pν assigns prob. 1− 1

ν to ξ = 0; assigns prob. 1
ν to ξ = ν

Unique minimizer at 0

But, Pν converges weakly to P
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Fairness constraints in learning
Random vector (x , y , z): features, labels, sensitive attributes

minimize
a,α

E
[
max

{
0, 1− y

(
⟨a, x⟩+ α

)}]
+ ∥a∥22

subject to E
[
(z − z̄)

(
⟨a, x⟩+ α

)]
≤ τ

Distribution of (x , y , z):{
(−1,−1, 0) with probability 1/2

(1, 1, 1) with probability 1/2

Produces set of minimizers: {1/2} × [−1/2, 1/2]

Approximating distribution of (x , y , z):
(−1,−1, 0) with probability 1/2

(1, 1, 1) with probability 1/2− 1/ν

(ν, 1, 1) with probability 1/ν

Produces minimizer: (1/4,−3/4)
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More trouble...

minimize
x∈Rn

f0(x) +
∑s

i=1
pi fi (x)

Two-stage stochastic problems without complete recourse

If fi (x) = ∞: changing pi = 0 has big effect

Classification problems with a cross-entropy loss

g(x ; ξ, η) = prob. that model x assigns to label η given feature ξ

Then, fi (x) = − log g(x ; ξi , ηi )

Counting losses, AUC, reliability analysis produce

fi (x) =

{
1 if state(ξi , x) > 0

0 otherwise
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Summary

Replacing
minimize

x∈Rn
EP

[
g(ξ, x)

]
by

minimize
x∈Rn

EPν

[
g(ξ, x)

]
may have outsized effect

Consider alternatives based on Rockafellian relaxation
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Perspectives

Conservative approaches under distributional ambiguity:

Robust optimization, adversarial training, diametrical risk

Motivation: downward bias in sampling; attacks

Our approach is optimistic based on relaxation

Recall: for nonnegative X ν converging in distribution to X :

liminf E[X ν ] ≥ E[X ] (possibly strict)

Approximation is too high: need relaxation not restriction
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Rockafellians
For φ : Rn → R = R ∪ {−∞,∞},

minimize
x∈Rn

φ(x)

A (bivariate) function f : Rm × Rn → R is a Rockafellian for the
problem, anchored at ū, when

f (ū, x) = φ(x) ∀x ∈ Rn
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Example: stochastic optimization

Concerns about changes to p = (p1, . . . , ps) in

minimize
x∈Rn

φ(x) = f0(x) +
∑s

i=1
pi fi (x)

May lead to study of the Rockafellian

f (u, x) = f0(x) +
∑s

i=1
(pi + ui )fi (x)

with anchor at ū = 0

How do solutions of minimizex f (u, x) change for u near 0?
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General framework

Actual problem: minimize
x∈Rn

φ(x)

Rockafellian f : Rm × Rn → R with anchor at ū; vector ȳ

Rockafellian relaxation: minimize
u∈Rm,x∈Rn

f (u, x)− ⟨ȳ , u − ū⟩

Approximating f ν : Rm × Rn → R; approximating vector yν

Approximating problem: minimize
u∈Rm,x∈Rn

f ν(u, x)− ⟨yν , u − ū⟩
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Approximating f ν : Rm × Rn → R; approximating vector yν

Approximating problem: minimize
u∈Rm,x∈Rn

f ν(u, x)− ⟨yν , u − ū⟩
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Exact Rockafellian

The Rockafellian f is exact for ȳ ∈ Rm when

x⋆ ∈ argminx φ(x) =⇒ (ū, x⋆) ∈ argminu,x f (u, x)− ⟨ȳ , u − ū⟩

The Rockafellian is strictly exact for ȳ when, in addition, it satisfies

(u⋆, x⋆) ∈ argminu,x f (u, x)−⟨ȳ , u−ū⟩ =⇒ u⋆ = ū, x⋆ ∈ argminx φ(x)
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Asymptotically exact Rockafellians

The approximations {f ν , ν ∈ N} are asymptotically exact
Rockafellians if they epi-converge to an exact Rockafellian f for
the actual problem

The approximations {f ν , ν ∈ N} are asymptotically strictly exact
Rockafellians if f is strictly exact
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Convergence under asymptotic exactness

Suppose that domφ ̸= ∅ and that {f ν , ν ∈ N} are asymptotically
strictly exact Rockafellians for ȳ ∈ Rm. Let yν → ȳ , εν ↘0, and

(uν , xν) ∈ εν-argminu,x
{
f ν(u, x)− ⟨yν , u⟩

}
.

Then, every cluster point (û, x̂) of {(uν , xν), ν ∈ N} satisfies

x̂ ∈ argminx φ(x)

If asymptotic strict exactness is replaced by asymptotic exactness,
then (û, x̂) satisfies a necessary optimality condition for the actual
problem
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Stochastic optimization with distributional ambiguity

minimize
x∈Rn

φ(x) = f0(x) +
∑s

i=1
pi fi (x) replace p by pν?

Adopt the Rockafellian

f (u, x) = f0(x) +
∑s

i=1
(pi + ui )fi (x) + ι{0}s (u)

with anchor at ū = 0 (ιC (u) = 0 if u ∈ C ; infinity otherwise)

Adopt approximations

f ν(u, x) = f0(x) +
∑s

i=1
(pνi + ui )fi (x) +

1
2θ

ν∥u∥22 + ι∆(p
ν + u)

where ∆ = {q ∈ Rs |
∑s

i=1 qi = 1, qi ≥ 0}

Solve the approximating problem

minimize
u∈Rs ,x∈Rn

f ν(u, x)−⟨yν , u⟩ instead of minimize
x∈Rn

f0(x)+
∑s

i=1
pνi fi (x)
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Exactness and asymptotic exactness

If fi : Rn → R, i = 0, 1, . . . , s proper lsc, then

▶ f is strictly exact for any ȳ

▶ {f ν , ν ∈ N} are asymptotically exact provided that θν → ∞
and θν∥pν − p∥22 → 0

16 / 24



Rate of convergence

If (uν , xν) minimizes approximating problem,

then there is a positive constant σ such that

dist
(
xν , 2ην- argminx f0(x)+

∑s

i=1
pi fi (x)

)
≤ ην = σ∥pν −p∥2/32

for all sufficiently large ν
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Interpretation

Approximating problem

minimize
u∈Rs ,x∈Rn

f ν(u, x)− ⟨yν , u⟩

reduces to

minimize
x∈Rn

f0(x) +
∑s

i=1
pνi fi (x)− rν(x)

with “regularizer”

rν(x) = min
w∈Rs

{
max

i=1,...,s
wi − ⟨pν ,w⟩+ 1

2θν
∥∥yν − F (x)− w

∥∥2
2

}
where F (x) =

(
f1(x), . . . , fs(x)

)
If F smooth, then rν is continuously differentiable
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Refinement 1: Φ-divergence

New approximation

f ν(u, x) = f0(x)+
∑s

i=1
(pνi +ui )fi (x)+θνdΦ(p

ν+u|pν)+ι∆(p
ν+u)

instead of

f ν(u, x) = f0(x) +
∑s

i=1
(pνi + ui )fi (x) +

1
2θ

ν∥u∥22 + ι∆(p
ν + u)

Asymptotic strict exactness when

θν → ∞
θν∥pν − p∥2 → 0

19 / 24



Refinement 1: Φ-divergence

New approximation

f ν(u, x) = f0(x)+
∑s

i=1
(pνi +ui )fi (x)+θνdΦ(p

ν+u|pν)+ι∆(p
ν+u)

instead of

f ν(u, x) = f0(x) +
∑s

i=1
(pνi + ui )fi (x) +

1
2θ

ν∥u∥22 + ι∆(p
ν + u)

Asymptotic strict exactness when

θν → ∞
θν∥pν − p∥2 → 0

19 / 24



Refinement 2: support ambiguity

Actual problem

minimize
x∈Rn

f0(x) +
∑s

i=1
pig(ξi , x)

What if p replaced by pν and ξi by ξνi ?

Rockafellian

f
(
(u, v), x

)
= f0(x)+

∑s

i=1
(pi+ui )g(ξi+vi , x)+ι{0}s (u)+ι{0}sm(v)

and approximation

f ν
(
(u, v), x

)
= f0(x) +

∑s

i=1
(pνi + ui )g(ξ

ν
i + vi , x)

+ 1
2θ

ν∥u∥22 +
1
2λ

ν∥v∥22 + ι∆(p
ν + u)

strictly exact and asymptotically strictly exact as before

20 / 24



Refinement 2: support ambiguity

Actual problem

minimize
x∈Rn

f0(x) +
∑s

i=1
pig(ξi , x)

What if p replaced by pν and ξi by ξνi ?

Rockafellian

f
(
(u, v), x

)
= f0(x)+

∑s

i=1
(pi+ui )g(ξi+vi , x)+ι{0}s (u)+ι{0}sm(v)

and approximation

f ν
(
(u, v), x

)
= f0(x) +

∑s

i=1
(pνi + ui )g(ξ

ν
i + vi , x)

+ 1
2θ

ν∥u∥22 +
1
2λ

ν∥v∥22 + ι∆(p
ν + u)

strictly exact and asymptotically strictly exact as before

20 / 24



Refinement 3: rate-independent Rockafellian

Return to
minimize

x∈Rn
f0(x) +

∑s

i=1
pi fi (x)

but with Rockafellian

f (u, x) = f0(x) +
∑s

i=1
(pi + ui )fi (x) + θ∥u∥1 + ι∆(p + u)

and approximation

f ν(u, x) = f0(x) +
∑s

i=1
(pνi + ui )fi (x) + θ∥u∥1 + ι∆(p

ν + u)

Strictly exact and asymptotically strictly exact if

fi : Rn → R, i = 0, 1, . . . , s proper lsc; θ sufficiently large

∥pν − p∥2 → 0

∃x̄ such that fi (x̄) < ∞ and infx fi (x) finite for i = 0, 1, . . . , s
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Refinement 3: rate-independent Rockafellian

Return to
minimize

x∈Rn
f0(x) +

∑s

i=1
pi fi (x)

but with Rockafellian

f (u, x) = f0(x) +
∑s

i=1
(pi + ui )fi (x) + θ∥u∥1 + ι∆(p + u)

and approximation

f ν(u, x) = f0(x) +
∑s

i=1
(pνi + ui )fi (x) + θ∥u∥1 + ι∆(p

ν + u)

Strictly exact and asymptotically strictly exact if

fi : Rn → R, i = 0, 1, . . . , s proper lsc; θ sufficiently large

∥pν − p∥2 → 0

∃x̄ such that fi (x̄) < ∞ and infx fi (x) finite for i = 0, 1, . . . , s
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Outliers
60000 MNIST images; 600 Chars74k images (random labels)

“Incorrect” probabilities: pνi = 1/60600 = 1.65 · 10−5

“Correct” prob.: pi = 1/60000 for MNIST; pi = 0 for Chars74k

Solve approximating problem instead of minimize
x∈Rn

∑s

i=1
pνi fi (x)
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Outlier identification
Solve approximating problem using alternating heuristic

minimize
u∈Rm,x∈Rn

∑s

i=1
(pνi + ui )fi (x) + θ∥u∥1 + ι∆(p

ν + u)

u-minimization: linear programming

x-minimization: stochastic gradient descent

544 of 600 Chars74k images “knocked out” with ui = −1.65 · 10−5
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