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Distributional ambiguity
miQEiF&ize Ep[g(&,x)]

If P is replaced by approximating P¥, would the corresponding
solutions be close?

P statistical noise; P¥ empirical distribution
P sensitivity analysis
» upweighing, influence functions, adversarial attacks

» corruption, contamination, outliers
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Lack of convergence of expectations

Let g(&,x) = &x+ 1(1 - x)
minimize Ep [g(¢, x)]
P assigns probability 1 to £ =0

Unique minimizer at 1
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Lack of convergence of expectations

Let (€. x) = Ex + 3(1— %)

e B ’
minimize Ep [g(¢, x)]
P assigns probability 1 to £ =0

Unique minimizer at 1

N
minimize Ep. [g(€, x)]

P assigns prob. 1 — % to & = 0; assigns prob. % toé=v

Unique minimizer at 0

But, P¥ converges weakly to P
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Fairness constraints in learning
Random vector (x,y, z): features, labels, sensitive attributes

minimize E[max {0, 1— y((a,X> + a) }} + ||all3

a,o

subject to E[(z —z)((a,x) + a)] <r
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minimize E[max {0, 1— y((a,X> + a) }} + ||all3

a
subject to E[(z —z)((a,x) + a)] <r
Distribution of (x,y, z):
{(—1,—1,0) with probability 1,2
(1,1,1) with probability 1/2
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5 /24



Fairness constraints in learning
Random vector (x,y, z): features, labels, sensitive attributes

minimize E[max {0, 1— y((a,X> + a) }} + ||all3

a,a
subject to E[(z —z)((a,x) + 04)] <r
Distribution of (x,y, z):
(=1,—1,0) with probability 1/2
(1,1,1) with probability 1/2
Produces set of minimizers: {1/2} x [-1/2,1/2]
Approximating distribution of (x,y, z):
(=1,-1,0) with probability 1/2
(1,1,1) with probability 1/2 — 1 /v
(v,1,1) with probability 1/v
Produces minimizer: (1/4,—3/4)
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More trouble...

minimize fo(x +Z

x€ER"

Two-stage stochastic problems without complete recourse
If fi(x) = co: changing p; = 0 has big effect
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More trouble...

minimize fo(x +Z

x€ER"

Two-stage stochastic problems without complete recourse

If fi(x) = co: changing p; = 0 has big effect

Classification problems with a cross-entropy loss

g(x;&,mn) = prob. that model x assigns to label 7 given feature £
Then, fi(x) = —log g(x; &, m;)

Counting losses, AUC, reliability analysis produce

F(x) = {1 if state(&;, x) > 0

0 otherwise
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Summary

Replacing

mipei%'nnize Ep[g(&,x)]

by

migei%’jze Epv[g(&, x)]

may have outsized effect

Consider alternatives based on Rockafellian relaxation

724



Perspectives
Conservative approaches under distributional ambiguity:

Robust optimization, adversarial training, diametrical risk

Motivation: downward bias in sampling; attacks
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Perspectives

Conservative approaches under distributional ambiguity:
Robust optimization, adversarial training, diametrical risk

Motivation: downward bias in sampling; attacks

Our approach is optimistic based on relaxation

Recall: for nonnegative X* converging in distribution to X:
liminf E[X"] > E[X] (possibly strict)

Approximation is too high: need relaxation not restriction

8 /24



Rockafellians
For o : R" = R =RU {—00, 00},

minimize ©(x)

9/ 24



Rockafellians
For ¢ : R" - R =R U {—00, 00},

minimize ©(x)

A (bivariate) function f : R™ x R" — R is a Rockafellian for the
problem, anchored at &I, when

f(a,x)=¢(x) VxeR"
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Example: stochastic optimization

Concerns about changes to p = (p1,...,ps) in
minimize
nimize ¢(0 = h() + 3,
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Example: stochastic optimization

Concerns about changes to p = (p1,...,ps) in
minimize
nimize ¢(0 = h() + 3,

May lead to study of the Rockafellian

f(u,x) = fo(x) —i—Z (pi + ui)fi(x)

with anchor at 1 =0

How do solutions of minimize, f(u, x) change for u near 07
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General framework

Actual problem: minimize ¢(x)
xeR"
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General framework

Actual problem: minimize ¢(x)
xeR"

Rockafellian f : R™ x R” — R with anchor at &; vector ¥

Rockafellian relaxation: minimize f(u,x) — (y,u — @)
ueRM xeR"

Approximating f¥ : R™ x R" — R; approximating vector y”

Approximating problem: minimize “(u,x) — (y",u — )
ueR™ xeR"
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Exact Rockafellian

The Rockafellian f is exact for y € R™ when

x* € argmin, o(x) == (O,x") € argmin, , f(u,x) — (y,u — @)

12 /24



Exact Rockafellian

The Rockafellian f is exact for y € R™ when

x* € argmin, o(x) == (O,x") € argmin, , f(u,x) — (y,u — @)

The Rockafellian is strictly exact for ¥ when, in addition, it satisfies

(u*,x*) € argmin,, , f(u,x)—(y,u—0) = u* =@, x* € argmin, ©(x)
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Asymptotically exact Rockafellians

The approximations {f”,v € N} are asymptotically exact
Rockafellians if they epi-converge to an exact Rockafellian f for
the actual problem
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Asymptotically exact Rockafellians

The approximations {f”,v € N} are asymptotically exact
Rockafellians if they epi-converge to an exact Rockafellian f for
the actual problem

The approximations {f”,v € N} are asymptotically strictly exact
Rockafellians if f is strictly exact
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Convergence under asymptotic exactness

Suppose that dom ¢ # () and that {f, v € N} are asymptotically
strictly exact Rockafellians for y € R™. Let y¥ — ¥, €“\.0, and

(u”,x") € Ey—argminu7x {f”(u,x) —(y", u)}
Then, every cluster point (4, X) of {(u”,x"),v € N} satisfies

X € argmin, p(x)
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Convergence under asymptotic exactness

Suppose that dom ¢ # () and that {f, v € N} are asymptotically
strictly exact Rockafellians for y € R™. Let y¥ — ¥, €“\.0, and

(u”,x") € e”-argmin,  {f"(u,x) — (y", u)}.
Then, every cluster point (4, X) of {(u”,x"),v € N} satisfies
X € argmin, p(x)

If asymptotic strict exactness is replaced by asymptotic exactness,

then (4, X) satisfies a necessary optimality condition for the actual
problem
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Stochastic optimization with distributional ambiguity

e = fo(x eplace p by p¥?
minimize ((x) = fo(x +Z replace p by p
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Stochastic optimization with distributional ambiguity

e = fo(x eplace p by p¥?
minimize ((x) = fo(x +Z replace p by p

Adopt the Rockafellian
flu,x) = fo(x Z (pi + uj)fi(x) + t{oys (1)

with anchor at 5 =0 (cc(u) =0 if u € C; infinity otherwise)

Adopt approximations
£, x) = o(x) + D (o} + u)fi(x) + 30 |ul3 + ea(p” + u)
where A={qgeR°| >3 ,qi=1, g >0}

Solve the approximating problem

inimize " tead of fo(x
minimize (u,x)—(y", u) instead o m|n|m|ze0 Z
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Exactness and asymptotic exactness

If f:R" =R, i=0,1,...,s proper Isc, then
» f is strictly exact for any ¥

» {f” v € N} are asymptotically exact provided that ¥ — oo
and 0¥ o — pll§ — 0
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Rate of convergence

If (u”, x”) minimizes approximating problem,

then there is a positive constant ¢ such that
. y 2/3
dist (x”, 20"-argmin, f(x)+>__ pifi(x)) <0’ = ollp” = pl3

for all sufficiently large v
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Interpretation
Approximating problem
minimize ¥ (u,x) — {y", u
ueRs xeR" ( ’ ) <y7 >

reduces to

m|n|m|zefo +Z pi fi(x) — r’(x)
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Interpretation
Approximating problem

o o
minimize £(u, x) — {y", )

reduces to

m|n|m|zefo +Z pi fi(x) — r’(x)

with “regularizer”

ol — o) — w2}

v _ N7
()= i 4 o= (5 + o

where F(x) = (A(x),. .., fs(x))
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Interpretation

Approximating problem

o o
minimize £(u, x) — {y", )

reduces to

m|n|m|zefo +Z pi fi(x) — r’(x)

with “regularizer”

ol — o) — w2}

v _ N7
()= i 4 o= (5 + o

where F(x) = (A(x),. .., fs(x))
If F smooth, then r” is continuously differentiable
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Refinement 1. ®-divergence

New approximation

£, %) = h(x)+Y_ (PY+ui)fi(x)+0" do(p"+ulp")+ia(p" +u)
instead of

¥ (u,x) = fo(x +Z (pY + uj)fi(x) + 36”||ul|3 + ta(p” + v)
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Refinement 1. ®-divergence

New approximation
£, %) = h(x)+Y_ (PY+ui)fi(x)+0" do(p"+ulp")+ia(p" +u)
instead of

¥ (u,x) = fo(x +Z (pY + uj)fi(x) + 36”||ul|3 + ta(p” + v)

Asymptotic strict exactness when
0¥ —
0”(lp” — pll2 — 0
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Refinement 2: support ambiguity

Actual problem
. . . S
ml)?glg}ze fo(x) + E 1 pig(&i,x)

What if p replaced by p” and §; by &7
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Refinement 2: support ambiguity

Actual problem
m|n|m|ze fo(x) +Z pig(&i,x)

What if p replaced by p” and §; by &7
Rockafellian
f((u,v),x) = fo(x Z (p,+u, (§itvi, x)+1iops (u)+egoysm(v)
and approximation

£ ((u,v), %) = () + Y (P} + u)g(&l + vi,x)

+ 30" |[ull3 + 2N |VIE + alp” + v)

strictly exact and asymptotically strictly exact as before
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Refinement 3: rate-independent Rockafellian

Return to <
minimize fo(x) + Zi:l pifi(x)

but with Rockafellian

fu,x) = fo(x Z (pi + u))fi(x) + 0||ul|1 + ta(p + v)
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Refinement 3: rate-independent Rockafellian

Return to <
minimize fo(x) + Zi:l pifi(x)

but with Rockafellian
fu,x) = fo(x Z (pi + u))fi(x) + 0||ul|1 + ta(p + v)

and approximation

F(u,x) = H(x) + D (o} + u)fi(x) + 0lulls + ea(p” + v)

Strictly exact and asymptotically strictly exact if

fi:R" =R, i=0,1,...,s proper Isc; § sufficiently large
Ip” = pll2 =0

3x such that fj(X) < oo and infy fi(x) finite for i = 0,1,..

.S
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Outliers

60000 MNIST images; 600 Chars74k images (random labels)

“Incorrect” probabilities: p/ = 1/60600 = 1.65 - 103

“Correct” prob.: p; = 1/60000 for MNIST; p; = 0 for Chars74k

Solve approximating problem instead of minimize

NN RNEEQNEN

SN NN N

EONODNENRAE

e

e
©

SENNENSNEME

SRR ERTE
EEEEREEEO

=\ ¢ n =l
CELEERELR DL

x€R?
TOE
EoA
AE=
OHAR
mEA
B HEBE

s

1

_ Pifi(x)

22/ 24



Outlier identification
Solve approximating problem using alternating heuristic
S

minimize 3776+ )f) + Ol + (5" + 0

u-minimization: linear programming

Xx-minimization: stochastic gradient descent

200+ I
100 4 I

o

-1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00
le-5

544 of 600 Chars74k images “knocked out” with u; = —1.65-107°
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