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Distributionally Robust Learning

A supervised learning problem: miQ Ep~p [£(x, D)]
X€E

where £ : R" x RY — R is the loss function of the predictor (controlled by x) on
the random data D, and X C R" is the feasible set. This framework includes a
large class of problems, including deep learning and classification.

Key Issues
@ generalization (good performance on unseen data)

@ robustness w.r.t to the distribution of the data

Distributionally robust version: min max EDNQ [£(x, D)]
x€X QeM(P

where M (P) is a closed convex set of probablllty measures,
defined by f-divergence, Monge distance, etc.

Difficulties of explicit robust formulations
@ Restriction to convex and smooth min-max problems

@ High cost when the sample size is very large

@ No sequential (learning) forms when new data arrive
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Modeling the uncertainty set M(P) with a risk measure

The risk minimization problem
in p|£(x, D
min p[¢(x, D)]

with a coherent measure of risk p[-]; Coherence means convexity, monotonicity,
translation equivariance, and positive homogeneity of p[-].

The dual representation
plZ]l = max Ep[Z],
0: e
where A(P) is a convex and closed set of measures O < P

The implicit min-max formulation

min  max Egpl|l(x, D)
x€X g . 4G A ol ]

Challenges

@ We want to cover nonsmooth and nonconvex £(-, D)

@ Statistical estimates of p[-] and its subgradients are needed for learning

© Andrzej Ruszczynski Advances in Risk-Averse Learning



The Mean—Semideviation Risk

The first-order mean—semideviation risk measure:
plZ] = E[Z] + » E[max (0, Z — E[Z])]. x €10,1]
The measure has the set A(P) defined as follows:

AP)={p=1+E-E[E]: § € Loo(2, 5, P), ||Elloc <%, £ =0}

Equivalent composition optimization problem ( for Z = {(x, D) )
)r(neiQ f(x, h(x))
with the functions
F(x,u) = E [E(X, D) + x max (0, £(x, D) — u)]
h(x) = E[t(x, D)]

Advantage: The expected values allow for statistical estimates
Challenge: Composition implies bias
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The Single Timescale Method

Three random sequences: approximate solutions {x}, path-averaged stochastic
subgradients {z*}, and inner function estimates {u*}

At each iteration k =0,1,2,..., we compute
. c
y* = argmin {(z5,y —x) + 2y — x|}
yeX

Xk+1 — Xk 4 Tk(yk —Xk).

New statistical estimates

Gl gkt .
o ghtl = |:g’f(+1:| of an element ght1 = I:gxk+1:| € af (xkt1, uky,
u u

o h*t1 of h(xk*1), and J*T1 of an element JXT1 € dh(x¥+1) (a row vector)

Update of the running averages

2 = 25 4 ar (BT + []k+1]TgLII<+1 — ),

UL = gk g TR (K — xK) 4 btk(/f'k-i-l _ uk)_
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@ The set X C R" is convex and compact;

@ For almost every (a.e.) w € £2, the function £(-, D(w)) is difFerAentiabIe in a
generalized (Norkin) sense with the generalized subdifferential d4(x, D(w)).
Moreover, for every compact set K an integrable function Lk : £2 — R exists,
satisfying sup,ex SUP, ¢t (x.D(@)) lgll < Lk(w).

o 7 € (0,min(1,1/a)] for all k, 332 1 = 00, Dpey E[17] < 00;

o For all k,

(1) g_k-i-l — gk+1 + eé-i—l + 5;4—1, with

gh e Of (M uk), E{elt|Fi} = 0, E{llef*2| %} < o2,
limg— o0 8;‘“ =0,

(il) AL = h(xkTL) 4 ef Tt 4 8K with
E{ef™|Fi} =0, E{[ef 12| Fi} < 02, limisoo 85T =0,

(iii) ]k+1 :AJk+1 + Ek+1 + Ak+1, with
Jk+1 c 8h(Xk+1), E{Ek+1|},‘k} — 0, E{||Ek+1”2|37k} < UE'
limy oo AKT1 =0, and E[(E**H) el | 7] =0
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Generation of Random Estimates

At each iteration, we sample an independent Bernoulli random variable 8 with
P[B=1=xand P[f =0] =1—x, and we set

g1 VLKL DLy i B = 0 or £(xFTL, DEFY) < Uk,
x 200(xk+1 DIy if B =1 and £(x*T1, DFFY) > K,
. —1 if B =1and £(xk*1, DE1) > yk,

RRtL — e(Xk+1’ Dfﬂ),

(XK1 DE+YYif g =0,
(XKL DA+ if g =1.

Skt _ {0 if B =0 or £(x*T1, DE1y < uk,

kL ¢ {
Here D¥*1 and D™ are independent samples from the distribution of D.

The need for the second sample from the data, D§+1, occurs only if B =1, that is,
with probability »%. Therefore, on average 1 + x» samples are needed per iteration.
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Convergence

Additional assumption:
@ The set F(X™) does not contain an interval of nonzero length.
Theorem

With probability 1 every accumulation point X of the sequence {x*} is stationary,
limy_s00(uX — h(x¥)) = 0, and the sequence {F(x¥)} is convergent.

The analysis uses the differential inclusion method, relating the interpolated
trajectories of the method to a solution to the system

(x(1). 2(b). 4(t)) € T (x(t). z(t). u(t))
with a convex and compact valued multifunction I"(-,-,-).

The Lyapunov function:

W(x,z,u) = af(x, u) — ;nel)rg {(z,y —x) + §||y — X||2} +y Hh(x) - u”
tracking error

gap (if z € dF(x) and u = h(x))
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Example: Deep Learning

CIFAR10 Dataset: 60000 color images of size 32 x 32 in 10 different classes
Model: 3-layer fully connected neural network with 328 510 parameters

s 70 75 o B 130 175 200 23 250 27 300 am 350
Tog oss

(c) =105 (d) 2 =0.8

Figure: The CDFs of the loss of the SGD solution and the STS solution on the original
data. The models are trained with contaminated data.
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Markov Decision Processes

State space X (finite but large)
Control space U (finite)
Feasible control set U : X = U,

Controlled transition kernel Q@ : graph(U) — £ (X),
P(X) - set of probability measures on X

Cost functions c: X x U - R, t=1,2,...
Stationary Markov policy IT = {m, 7,...} with 7 : X — U,

X¢ —> Uy = 7(X¢)

(Xt Ut) —> Xeqp1 ~ Q(Xe, )
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Markov Risk Measures

For a given policy IT, we observe a random sequence of costs
c(Xe, m(Xy)), t=1,2,...

where the process {X;} is generated by the Markov chain with the transition
probability matrix P

PI(i.j) = Q(j

i), i.jeX,
We introduce the notation:

' =c@i,n(i)), ieX.

Markov risk measures evaluate the risk of discounted future costs
as a function of the current state:

ViII = P1,00 (C(Xl’ ”(Xl))v aC(X29 H(XZ))’ Ol2C(X3, 7T(X3)), coo )

with X; = i and a Markov policy IT = (7, 7,...).
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The Structure of Markov Risk Measures. Policy Evaluation

Under the conditions of time consistency, translation, monotonicity, and
normalization of the risk measure, we have the policy evaluation equation

vl =T +ao(i, PP VT), ieX, t=012,....

Here, 0 : X x P(X) x V — R is a transition risk mapping: a generalization of the
usual conditional expected value.

Classical Case: Expectation

o(i, PH, VH) = Z Pé-jvjn.

JjEX

Risk-Averse Example: Mean—-Semideviation

o(i, P,-H,VH) = ZP,-?VJ-H +KZP,§7(VJ-H—M,-)+, k €10,1]

JjEX JjEX
N — —
i
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Policy Evaluation as Very Large System of Nonsmooth Equations

The risk-averse policy evaluation equation:
v-H—c +a0( PH H), ieX.

1

We introduce the space @ of transition kernels on X, define a vector-valued
transition risk operator S : @ x 'V — 'V, with components

SP™ v) £ 6(i, PA vy, ieX,

and rewrite the last equation as a nonsmooth equation:

v =T aS(PT, V) J

While it can be solved by a nonsmooth Newton's method and the resulting
evaluation used in a policy iteration method, all these techniques require solving
linear equations with the full transition probability matrix P and become
impractical, when the size of the state space is very large.
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The Projected Policy Evaluation Equation

We assume that each state i € X has a number of relevant features ¢;(i) € R,
j=1,...,m, where m < |X]|, and that the value v!T of a state can be
approximated by a linear combination of its features:

m
V,H%V,H=ergoj(i), i€ X, v~ 1T = or
j=t
wi(l)
¢ (2)
with the feature matrix @ = .
@ T(n)

With a projection operator L : 'V — range(®), we formulate the equation

Dr= L(cH +a5(PH,<Dr)) J
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Projection and Distortion

Assumption
The system under policy IT is ergodic with stationary probabilities g. J

The “orthogonal” projection:

L(w) = argmin |z—wl|q weV.
z€erange(P)

with
(viw)g =Y Liqiviwi, w2 = (w. w),.

The dual representation of each component of a coherent S:

S,' P,', = ma ,"P," / N e X.
(S LeAGP) GiPyv ().
jex

The distortion coefficient (risk premium) of the operator S

K = max{|§,-j = 1| 5 é',' € A(I, P,'), pij > 0, i,je X}
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Contraction of The Policy Evaluation Operator

The usual subgradients of S;(P;,-):

85,-(P,-,0) = {m,- -3 (é’, S o‘\)(l, P,)) mj; = C,'jp,'j, Jj € X}, ieX.

The transition risk operator satisfies for all w, v € V the inequality:

ISP, w) =S5(P,V)llg = V1+kllw—vlqg

Consider the operator
D,(v) = L(c+aS(P,v)), veV,

The policy evaluation equation:

If /T + k < 1 then the equation has a unique solution v, J

If @ has full column rank, only one r satisfies vil = @r.
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The Risk-Averse Method of Temporal Differences

The risk-averse temporal difference:

de = @ (i)re —c(ie) — a0 (i, P;,, @ry), t=0,1,2,....
N——’ N——
~v (i) ~v(’)

We assume that we can observe a random estimate G (i, P;,, ), such that
o(iy, Pi,, @re) = o(i, Pi,,@re) + &, t=0,1,2,...,
with some random errors £;. The observed risk-averse temporal differences,
di = ¢ (i)re — c(ie) — a& iz, Py, @re), t=0,1,2,...,

The Method

For a simulated trajectory {i1, ip,..., Iz, ...} of the system, evaluate

rt+1=rt—)/t(p(it)gt, t=0,1,2,...,

with stepsizes y; > 0.
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A Deterministic Model

e The random errors &, are temporarily ignored
e The updates of {r;} are averaged over all states with the distribution q.

Using the matrix Q = diag(q), we define the operator:
Ur) = E;Nq[(p(i)(wT(i)r —c(i) —ao(i, P;, (Dr))]
=@ Q[®r—c—aS(P.®r)].
The deterministic analog of the method:
Ft+1:Ft_)/U(Ft), t=0,1,2,..., y>0.

By the definition of the projection, a point r* is a solution if and only if
1 2
r* = arg:nln §||¢r —(c+aS(P,or")) ||q.

This occurs if and only if r* is a zero of U().

If /1 + k < 1, then for all y € (0, o), with Yo > 0, the algorithm generates a
sequence {r;} convergent to a point r* such that U(r*) = 0.
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Convergence in the Stochastic Case

Assumptions

The sequence {y;} is adapted to the filtration {¥;} and such that
i y:>0,t=0,1,..., as;

() Yooyt =00 as;

(i) E Y 32,y2% < oo;

T
(iv) For any ¢ > 0, lim sup Z |t — Ye41| =0 ass.

to=>00 (T2, ye<e} t=to

The sequence of errors {&;};>1 satisfies for t = 0,1,2... the conditions
(V) E[Et|$t] =0 a.s.;
vi) E[||E:|I? | F:] < CQA + ||re]|?) a.s., with some constant C > 0.

Theorem

Suppose the stepsizes and random estimates 7, (P;,, @ r;) satisfy the general
assumptions and a+/1 + » < 1. If the sequence {r;} is bounded with probability 1,
then every accumulation point of the sequence {r;} is a solution with probability 1.
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Example (Powell & Topaloglu, 2006)

e K = 200 vehicles

e M =50 locations

e Stochastic demand Dj; for transportation from location / to location j at time
t =1,2,.... The demand arrays D; in different time periods are independent

e Only vehicles available at location / may be used to satisfy the demand

e The vehicles may also be moved empty

e There are costs of moving the vehicles and rewards for moving cargo.

The state x; of the system at time t is the M-dimensional integer vector containing
the numbers of vehicles at each location.

K+M—1) ~ 10427_

The size of the state space is ( M1
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Approximate Dynamic Programming

Control u; - all decisions to move vehicles and load cargo.
They are made after the demand D; is observed.
Next state:

Xe+1 = X¢ — Alg, (balances of incoming and outgoing vehicles)

Optimal control:

uy (x¢, Dy) = argmin {cTu + av(x; — Au) }
u€U(x¢,Dt) —
value function

Approximate policy IT:
4 _ H T T
uf (x¢, Dy) = argmin {c u+a 7' (xy — Au) }
~———

u€U(x¢,Dt)
approximate value

7j is the assumed “cost” of having a vehicle at location .
We want to evaluate the policy IT.
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Features and the TD Method

Features ¢(x;) of the state x;: the state x; itself

Value function approximation:
VT (xe) = r' x..

The observed temporal difference (calculated by simulation):
d, = rl X — oz?f(P, c"u™ (x¢, D) + ar;r(xt — AU (x4, D))).

The method: 5
Fe41 = re — YXe dy, y >0

In the policy iteration method, after learning the coefficients r*,

we set w < r* (policy improvement).

In fact, we may put m < r; at every iteration (the “optimistic” version), which is
not always convergent, but which works well in our case.
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Simulation Results for TD(0)

%10°
241

Average profit

0 0.5 1 1.5 2
Time %104

Figure: The average profit per stage in the risk-averse and risk-neutral methods.

Unfortunately TD(A) does not work well here.
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