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Distributionally Robust Learning

A supervised learning problem: min
x2X

ED�P Œ`.x ;D/�

where ` W Rn �Rd ! R is the loss function of the predictor (controlled by x) on
the random data D, and X � Rn is the feasible set. This framework includes a
large class of problems, including deep learning and classification.

Key Issues

generalization (good performance on unseen data)
robustness w.r.t to the distribution of the data

Distributionally robust version: min
x2X

max
Q2M.P/

ED�Q Œ`.x ;D/�

where M.P/ is a closed convex set of probability measures,
defined by f -divergence, Monge distance, etc.

Difficulties of explicit robust formulations

Restriction to convex and smooth min-max problems
High cost when the sample size is very large
No sequential (learning) forms when new data arrive
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Modeling the uncertainty set M.P/ with a risk measure

The risk minimization problem

min
x2X

�
�
`.x ;D/

�
with a coherent measure of risk �Œ��; Coherence means convexity, monotonicity,
translation equivariance, and positive homogeneity of �Œ��.

The dual representation
�ŒZ � D max

Q W dQ
dP 2A

EQŒZ �;

where A.P/ is a convex and closed set of measures Q� P

The implicit min-max formulation

min
x2X

max
Q W dQ

dP 2A

EQ

�
`.x ;D/

�
Challenges

We want to cover nonsmooth and nonconvex `.�;D/
Statistical estimates of �Œ�� and its subgradients are needed for learning
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The Mean–Semideviation Risk

The first-order mean–semideviation risk measure:

�ŒZ � D E ŒZ �C ~E
�
max

�
0;Z �E ŒZ �

��
; ~ 2 Œ0; 1�

The measure has the set A.P/ defined as follows:

A.P/ D
˚
� D 1C � �E Œ�� W � 2 L1.˝;F ;P/; k�k1 � ~; � � 0

	
Equivalent composition optimization problem ( for Z D `.x ;D/ )

min
x2X

f .x ; h.x//

with the functions

f .x ; u/ D E
h
`.x ;D/C ~max

�
0; `.x ;D/ � u

�i
h.x/ D E Œ`.x ;D/�

Advantage: The expected values allow for statistical estimates
Challenge: Composition implies bias
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The Single Timescale Method

Three random sequences: approximate solutions fxkg, path-averaged stochastic
subgradients fzkg, and inner function estimates fukg

At each iteration k D 0; 1; 2; : : : , we compute

yk
D argmin

y2X

n
hzk ; y � xki C

c

2
ky � xkk2

o
xkC1

D xk C �k.y
k
� xk/:

New statistical estimates

QgkC1 D

�
QgkC1
x

QgkC1
u

�
of an element gkC1 D

�
gkC1
x

gkC1
u

�
2 O@f .xkC1; uk/,

QhkC1 of h.xkC1/, and QJ kC1 of an element JkC1 2 O@h.xkC1/ (a row vector)

Update of the running averages

zkC1
D zk C a�k

�
QgkC1
x C

�
QJ kC1�>

QgkC1
u � zk

�
;

ukC1
D uk C �k QJ

kC1.yk
� xk/C b�k

�
QhkC1

� uk
�
:
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Assumptions

The set X � Rn is convex and compact;
For almost every (a.e.) ! 2 ˝, the function `.�;D.!// is differentiable in a
generalized (Norkin) sense with the generalized subdifferential O@`.x ;D.!//.
Moreover, for every compact set K an integrable function LK W ˝ ! R exists,
satisfying supx2K sup

g2O@`.x;D.!//
kgk � LK .!/.

�k 2
�
0;min.1; 1=a/

�
for all k ,

P1
kD0 �k D1,

P1
kD0 E Œ�2

k � <1;
For all k ,

(i) QgkC1 D gkC1 C ekC1
g C ıkC1

g , with
gkC1 2 O@f .xkC1; uk/, E

˚
ekC1
g

ˇ̌
Fk

	
D 0, E

˚
kekC1

g k2jFk

	
� �2

g ,
limk!1 ı

kC1
g D 0,

(ii) QhkC1 D h.xkC1/C ekC1
h C ıkC1

h , with
E
˚
ekC1
h

ˇ̌
Fk

	
D 0, E

˚
ŒekC1

h �2jFk

	
� �2

h , limk!1 ı
kC1
h D 0,

(iii) QJ kC1 D JkC1 C E kC1 C�kC1, with
JkC1 2 O@h.xkC1/, E

˚
E kC1

ˇ̌
Fk

	
D 0, E

˚
kE kC1k2jFk

	
� �2

E ,
limk!1�

kC1 D 0, and E
�
.E kC1/>ekC1

gu

ˇ̌
Fk

�
D 0
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Generation of Random Estimates

At each iteration, we sample an independent Bernoulli random variable ˇ with
P Œˇ D 1� D ~ and P Œˇ D 0� D 1 � ~, and we set

QgkC1
x 2

(
O@`.xkC1;DkC1

1 / if ˇ D 0 or `.xkC1;DkC1
1 / < uk ;

2O@`.xkC1;DkC1
1 / if ˇ D 1 and `.xkC1;DkC1

1 / � uk ;

QgkC1
u D

(
0 if ˇ D 0 or `.xkC1;DkC1

1 / < uk ;

�1 if ˇ D 1 and `.xkC1;DkC1
1 / � uk ;

QhkC1
D `.xkC1;DkC1

1 /;

QJ kC1
2

(
O@`.xkC1;DkC1

1 / if ˇ D 0;
O@`.xkC1;DkC1

2 / if ˇ D 1:

Here DkC1
1 and DkC1

2 are independent samples from the distribution of D.

The need for the second sample from the data, DkC1
2 , occurs only if ˇ D 1, that is,

with probability ~. Therefore, on average 1C ~ samples are needed per iteration.

© Andrzej Ruszczyński Advances in Risk-Averse Learning



Convergence

Additional assumption:
The set F .X�/ does not contain an interval of nonzero length.

Theorem

With probability 1 every accumulation point Ox of the sequence fxkg is stationary,
limk!1.u

k � h.xk// D 0, and the sequence fF .xk/g is convergent.

The analysis uses the differential inclusion method, relating the interpolated
trajectories of the method to a solution to the system�

�

x.t/;
�

z .t/;
�

u.t/
�
2 �

�
x.t/; z.t/; u.t/

�
with a convex and compact valued multifunction � .�; �; �/.

The Lyapunov function:

W .x ; z ; u/ D af .x ; u/ �min
y2X

n
hz ; y � xi C

c

2
ky � xk2

o
„ ƒ‚ …

gap (if z 2 O@F .x/ and u D h.x/)

C
h.x/ � u

„ ƒ‚ …
tracking error
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Example: Deep Learning

CIFAR10 Dataset: 60 000 color images of size 32 � 32 in 10 different classes
Model: 3-layer fully connected neural network with 328 510 parameters
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Figure: The CDFs of the loss of the SGD solution and the STS solution on the original
data. The models are trained with contaminated data.
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Markov Decision Processes

State space X (finite but large)
Control space U (finite)
Feasible control set U W X � U,
Controlled transition kernel Q W graph.U/! P .X/,

P .X/ - set of probability measures on X

Cost functions c W X �U! R, t D 1; 2; : : :
Stationary Markov policy ˘ D f�; �; : : : g with � W X ! U,

xt �! ut D �.xt/

.xt ; ut/ �! xtC1 � Q.xt ; ut/
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Markov Risk Measures

For a given policy ˘ , we observe a random sequence of costs

c.Xt ; �.Xt//; t D 1; 2; : : :

where the process fXtg is generated by the Markov chain with the transition
probability matrix P˘ :

P˘ .i ; j/ D Q
�
j
ˇ̌
i ; �.i/

�
; i ; j 2 X;

We introduce the notation:

c˘i D c.i ; �.i//; i 2 X:

Markov risk measures evaluate the risk of discounted future costs
as a function of the current state:

v˘i D �1;1
�
c.X1; �.X1//; ˛c.X2; �.X2//; ˛

2c.X3; �.X3//; : : :
�

with X1 D i and a Markov policy ˘ D .�; �; : : : /.
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The Structure of Markov Risk Measures. Policy Evaluation

Under the conditions of time consistency, translation, monotonicity, and
normalization of the risk measure, we have the policy evaluation equation

v˘i D c˘i C ˛�
�
i ;P˘i ; v

˘
�
; i 2 X; t D 0; 1; 2; : : : :

Here, � W X �P .X/ � V ! R is a transition risk mapping: a generalization of the
usual conditional expected value.

Classical Case: Expectation

�
�
i ;P˘i ; v

˘
�
D

X
j2X

P˘ij v
˘
j :

Risk-Averse Example: Mean–Semideviation

�
�
i ;P˘i ; v

˘
�
D

X
j2X

P˘ij v
˘
j„ ƒ‚ …

�i

C�
X
j2X

P˘ij
�
v˘j � �i

�
C
; � 2 Œ0; 1�
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Policy Evaluation as Very Large System of Nonsmooth Equations

The risk-averse policy evaluation equation:

v˘i D c˘i C ˛�
�
i ;P˘i ; v

˘
�
; i 2 X:

We introduce the space Q of transition kernels on X, define a vector-valued
transition risk operator S W Q � V ! V , with components

Si .P
˘ ; v/

M
D �.i ;P˘i ; v/; i 2 X;

and rewrite the last equation as a nonsmooth equation:

v˘ D c˘ C ˛S.P˘ ; v˘ /

While it can be solved by a nonsmooth Newton’s method and the resulting
evaluation used in a policy iteration method, all these techniques require solving
linear equations with the full transition probability matrix P˘ and become
impractical, when the size of the state space is very large.
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The Projected Policy Evaluation Equation

We assume that each state i 2 X has a number of relevant features 'j .i/ 2 R,
j D 1; : : : ;m, where m� jXj, and that the value v˘i of a state can be
approximated by a linear combination of its features:

v˘i � zv
˘
i D

mX
jD1

rj'j .i/; i 2 X; v˘ � Qv˘ D ˚r

with the feature matrix ˚ D

26664
'>.1/
'>.2/
:::

'>.n/

37775 :
With a projection operator L W V ! range.˚/, we formulate the equation

˚r D L
�
c˘ C ˛S.P˘ ; ˚r/

�
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Projection and Distortion

Assumption

The system under policy ˘ is ergodic with stationary probabilities q.

The “orthogonal” projection:

L.w/ D argmin
z2range.˚/

kz � wkq; w 2 V :

with
hv ;wiq D

Pn
iD1qiviwi ; kwk

2
q D hw ;wiq:

The dual representation of each component of a coherent S :

Si .Pi ; v/ D max
�i2A.i ;Pi /

X
j2X

�ijPijv.j/; i 2 X:

The distortion coefficient (risk premium) of the operator S

� D max
˚
j�ij � 1j W �i 2 A.i ;Pi /; pij > 0; i ; j 2 X

	
:
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Contraction of The Policy Evaluation Operator

The usual subgradients of Si .Pi ; �/:

@Si .Pi ; 0/ D
˚
mi W 9

�
�i 2 A.i ;Pi /

�
mij D �ijpij ; j 2 X

	
; i 2 X:

The transition risk operator satisfies for all w ; v 2 V the inequality:

kS.P;w/ � S.P; v/kq �
p

1C � kw � vkq:

Consider the operator eD�.v/ D L
�
c C ˛S.P; v/

�
; v 2 V ;

The policy evaluation equation:
v D eD�v :

If ˛
p

1C � < 1 then the equation has a unique solution v˘ .

If ˚ has full column rank, only one r satisfies v˘ D ˚r .
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The Risk-Averse Method of Temporal Differences

The risk-averse temporal difference:

dt D '
>.it/rt„ ƒ‚ …
�v.it /

�c.it/ � ˛�.it ;Pit ; ˚rt„ƒ‚…
�v.�/

/; t D 0; 1; 2; : : : :

We assume that we can observe a random estimate z�.it ;Pit ; �/, such that

z�.it ;Pit ; ˚rt/ D �.it ;Pit ; ˚rt/C �t ; t D 0; 1; 2; : : : ;

with some random errors �t . The observed risk-averse temporal differences,

zdt D '
>.it/rt � c.it/ � ˛z�.it ;Pit ; ˚rt/; t D 0; 1; 2; : : : ;

The Method

For a simulated trajectory fi1; i2; : : : ; it ; : : : g of the system, evaluate

rtC1 D rt � t'.it/ zdt ; t D 0; 1; 2; : : : ;

with stepsizes t > 0.
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A Deterministic Model

� The random errors �t are temporarily ignored
� The updates of frtg are averaged over all states with the distribution q.
Using the matrix Q D diag.q/, we define the operator:

U.r/ D Ei�q

�
'.i/

�
'>.i/r � c.i/ � ˛�.i ;Pi ; ˚r/

��
D ˚>Q

�
˚r � c � ˛ S.P; ˚r/

�
:

The deterministic analog of the method:

NrtC1 D Nrt �  U. Nrt/; t D 0; 1; 2; : : : ;  > 0:

By the definition of the projection, a point r� is a solution if and only if

r� D argmin
r

1
2

˚r �
�
c C ˛S.P; ˚r�/

�2
q
:

This occurs if and only if r� is a zero of U.�/.

If ˛
p

1C � < 1, then for all  2 .0; 0/, with 0 > 0, the algorithm generates a
sequence f Nrtg convergent to a point r� such that U.r�/ D 0.
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Convergence in the Stochastic Case

Assumptions

The sequence ftg is adapted to the filtration fFtg and such that
(i) t > 0, t D 0; 1; : : : , a.s.;
(ii)

P1
tD0 t D1 a.s.;

(iii) E
P1

tD0 
2
t <1;

(iv) For any " > 0, lim
t0!1

sup
fT W

PT
tDt0 t�"g

TX
tDt0

jt � tC1j D 0 a.s.

The sequence of errors f�tgt�1 satisfies for t D 0; 1; 2 : : : the conditions
(v) E Œ�t jFt � D 0 a.s.;
(vi) E Œk�tk

2 jFt � � C .1C krtk2/ a.s., with some constant C > 0.

Theorem
Suppose the stepsizes and random estimates e� it .Pit ; ˚rt/ satisfy the general
assumptions and ˛

p
1C ~ < 1. If the sequence frtg is bounded with probability 1,

then every accumulation point of the sequence frtg is a solution with probability 1.
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Example (Powell & Topaloglu, 2006)

� K D 200 vehicles
� M D 50 locations
� Stochastic demand Dijt for transportation from location i to location j at time
t D 1; 2; : : :. The demand arrays Dt in different time periods are independent
� Only vehicles available at location i may be used to satisfy the demand
� The vehicles may also be moved empty
� There are costs of moving the vehicles and rewards for moving cargo.

The state xt of the system at time t is the M-dimensional integer vector containing
the numbers of vehicles at each location.

The size of the state space is
�KCM�1

M�1

�
� 10427.
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Approximate Dynamic Programming

Control ut - all decisions to move vehicles and load cargo.
They are made after the demand Dt is observed.
Next state:

xtC1 D xt � Aut ; (balances of incoming and outgoing vehicles)

Optimal control:

u�t .xt ;Dt/ D argmin
u2U.xt ;Dt /

n
c>u C ˛ v.xt � Au/„ ƒ‚ …

value function

o
:

Approximate policy ˘ :

u�t .xt ;Dt/ D argmin
u2U.xt ;Dt /

n
c>u C ˛ �>.xt � Au/„ ƒ‚ …

approximate value

o
:

�j is the assumed “cost” of having a vehicle at location j .
We want to evaluate the policy ˘ .
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Features and the TD Method

Features '.xt/ of the state xt : the state xt itself

Value function approximation:

ev�.xt/ D r>xt :

The observed temporal difference (calculated by simulation):

ed t D r>t xt � ˛e��P; c>u�.xt ;D/C ˛r>t �xt � Au�.xt ;D/
��
:

The method:
rtC1 D rt � xt zdt ;  > 0

In the policy iteration method, after learning the coefficients r�,
we set �  r� (policy improvement).
In fact, we may put �  rt at every iteration (the “optimistic” version), which is
not always convergent, but which works well in our case.
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Simulation Results for TD(0)

Figure: The average profit per stage in the risk-averse and risk-neutral methods.

Unfortunately TD(�) does not work well here.
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