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In this talk Dr.  Xu cautions 
us against over-confidence 
from “small” sample sizes



Traditional SP Applications 

Finance

Hydro-Thermal 
Power Generation

Logistics and 
Transportation 



• The Setting of Two-Stage Stochastic LP 

• Brief Tour of Sampling Methods for SLP

• Validation of Sampling Methods

• Compromise Decisions:  Computational View of Model Validation
I. Two-Stage Stochastic Linear Programming (based in Sen

and Liu:  appeared in Operations Research, 2016)

II. *Multi-stage Stochastic Linear Programming (Xu, 2022)

III. *Two-Stage Stochastic Combinatorial Programming (Xu, 
2022)

• Conclusions

Plan for this Presentation

*Xu, J. (2022) “Computational Validation of Stochastic Programming Models and 
Applications,” Ph.D. Dissertation, ECE Dept., Univ. of Southern California.



The Two-Stage Setting of
Stochastic Linear Programming

• The overall problem:  Min {𝑐 𝑥 + 𝑬𝑷[ℎ 𝑥, ,𝜔 : 𝑥 ∈ 𝑋}
• For a given 𝜔! = (𝜉!, 𝐶!) denotes a scenario/outcome

Remarks:

• For high-dimensional sample spaces, 𝐸"[ℎ 𝑥, ,𝜔 ] is not computable in reasonable time (SP is 
#P hard (Hanasusanto, Kuhn and Weisemann (15) and Dyer and Stougie (06)) …  Hence SP 
Algorithms use Sampling

• For SVM models, the first stage of an SVM chooses the pair of half-spaces specified by a first 
stage vector, and the second stage identifies whether a point belongs to one side of the 
separating hyperpane or the other.  

• Kernel SVMs lead to Two-stage Stochastic Quadratic Programs 

ℎ(𝜔!) =
Min 𝒅!"𝑢!

s.t. 𝑢! ∈ 𝑈! 𝑥 ,
𝑈! 𝑥 = |𝑢! 𝑫𝑢! ≤ 𝜉! − 𝐶!𝑥



Brief Tour of Sampling-Based Methods
• Sample Average Approximation (aka External Sampling)

– Kleywegt, Shapiro, Homem-de-Mello (02)
– Periera, Pinto (91) … Stochastic Dual Dynamic Programming (SDDP)

• Adaptive/Incremental/Sequential Sampling
– Stochastic Quasi-Gradient (Ermoliev, Gaivoronski, Norkin, Uryasiev… 60’s-80’s)
– Importance Sampling (Dantzig, Glynn, Infanger, 91)
– Robust Stochastic Approx. (Nemirovski, Juditsky, Lan, Shapiro 09)
– Stochastic Decomposition (Higle, Sen 91, 94 … Sampling and Regularization)
– Royset (13)
– Royset and Szechtman (13)
– Pasupathy and Song (21)
– Chen, Menickelly, Scheinberg (16)
– Blanchet, Cartis, Menickelly, Scheinberg (19)

• Statistical Stopping (Bootstrapping and Replications)
– Higle, Sen (91b, 96, 99)
– Shapiro and Homem-de-Mello (98)
– Mak, Morton and Wood (99)
– Nesterov and Vial (00/08)
– Bayraksan and Morton (06, 11)
– Bayraksan and  Pierre-Louis  (12)
– Sen and Y. Liu (16)  …. Genesis of today’s talk
– J. Liu and Sen (19)

• Machine Learning  (Explosive Literature)



Common Strategy for SP: SAA

1. Formulate a sample average 
approximation (SAA) problem 
using either given data or a 
simulator (e.g., daily wind, or 
monthly precipitation) 

2. Use Some SP algorithm to 
solve the SAA problem

3. Replicate if necessary



What can happen if we use different seeds

In-sample Bounds

• Hydro-thermal 
scheduling 
problem

• 108  scenarios

What should we do to obtain Decisions/Policies ?



The Two-Stage Setting of
Stochastic Linear Programming

• The overall problem:  Min {𝑐 𝑥 + 𝑬𝑷[ℎ 𝑥, ,𝜔 : 𝑥 ∈ 𝑋}
• For a given 𝜔! = (𝜉! , 𝐶!) denotes an outcome

• In our studies we make the “Fixed-Recourse” assumption (𝑫 is fixed)

• Randomness can be allowed for second stage costs 𝒅

• For high-dimensional sample spaces, 𝐸"[ℎ 𝑥, .𝜔 ] is not computable in 
reasonable time (SP is #P hard (Hanasusanto, Kuhn and Weisemann (15) 
and Dyer and Stougie (06)) …  Hence SP Algorithms use Sampling

ℎ(𝑥, 𝜔!) =
Min 𝒅!"𝑢!

s.t. 𝑢! ∈ 𝑈! 𝑥 ,
𝑈! 𝑥 = |𝑢! 𝑫𝑢! ≤ 𝜉! − 𝐶!𝑥



– Replicate Algorithmic Process 

• 𝑥# ∈ 𝜀 − argmin. 𝑓# 𝑥 + $#
% 𝑥 − 𝑥# % | 𝑥 ∈ 𝑋

• Here 𝑓# denotes the terminating value function approximation
– Obtain a Compromise Decision

• 𝒙𝒄 = argmin "Grand Mean" Value Function =
argmin ∑#

'
(

𝑓# 𝑥 + )$
%
𝑦# % : 𝑥 − 𝑦# = 𝑥#, 𝑥 ∈ 𝑋

– Here D𝝈 sample average Sample Average Proximal Term
– Let		D𝒙 denote sample average of  replication solutions 𝑥# .  (ML refers 

to 𝑥̅ as the bagging solution. No Compromise Decision in ML) 
– If 𝑥* ≈ 𝑥̅ stop.  Else, each replication is run for more samples.

Two-Stage  “Compromise Decision” 



optimal valueOrdinary SAA lower bound estimate

Compromise lower bound estimate

• A tighter lower bound estimate

“Compromise Solution” Reduces Bias



Theorem:  Let 𝑀 denote the number of 
replications, and 𝑥̅ the sample average solution. 
If  𝑥! = 𝑥̅ , then both are Optimal
and |𝑓" 𝑥" − 𝑓 𝑥" | = 𝑂#(𝑁$%/'), where 𝑁 is 
the common sample size among all runs. 
And, |𝑓 𝑥! − ,𝐹( 𝑥! | = 𝑂# (𝑁𝑀)$%/'
where,  ,𝐹((𝑥!) is the value of the Grand Sample 
Mean Function

Compromise Solution Reduces Variance



Some “concrete” instances

Problem
Name

Domain # of 1st

stage 
vars.

# of 2nd

stage 
vars.

# of 
random 

variables

Universe  
of 

scenarios

Comment

LandS Electric 
Power

4 12 3 𝑂(10+) Made-up

20TERM Logistics 63 764 40 𝑂(10'%) Semi-real
SSN Telecom 89 706 86 𝑂(10,-) Semi-real

STORM Logistics 121 1259 117 𝑂(10.') Semi-real

Table 1: SP Test Instances

Sampling Approaches:  External Approach (SAA) and Internal Approach (SA/SD)



Some Comments on SSN Experiments  -
Anomalies Reported in the Literature

• Scenarios in SSN were generated using data from an actual 
network planning application from Atlanta  (many years ago) 

• For large sample size (N = 5000), Latin Hypercube Sampling, 
the solutions  (2𝑥3) are very far apart, even though the 
objective functions are close to being the same. 

• Such instances are sometimes referred to as “ill-conditioned” 
problem where “ill conditioning” has a specific meaning for 
sampling-based methods (introduced by Shapiro).

• For small sample sizes (say N = 50), the variance is small 
(because many objective estimates are 0).  However, as the 
sample size is increased, the variance also increases, although 
the bias reduces



Convergence with high Probability
using SD From “Loose-to-Nominal-to-Tight” Tolerance

Tolerances

Each Series of Replications Represents a Tolerance Level:  Loose, Nominal, Tight 
using Stochastic Decomposition (SD) Stopping Rules



After Replications Get Compromise Decisions 
(Two-Stage SLP)

Values of Compromise Decisions have Lower Bias and Lower Variance!

L
N

T



Multi-stage SLP (Stochastic Dual DP - SDDP)



Comments on Experiments Using SDDP 

.  

• Asymptotic convergence requires 
{𝑁O, 𝑁P, … , 𝑁Q} → ∞,

But, of course, we stop in finite time.
• As in Dynamic Programming, T-stage Compromise 

Reduces to a Sequence of T-1 Two-Stage Cases
• SDDP does not use a regularizer, so we only use the 

generated piecewise linear approximation (PLA). 

• SDDP has no cut-pruning ⇒ Large number of pieces 
per stage



thermal
generation

hydropower 
generation

hydropower 
generation

hydropower 
generation

spillage

spillage

spillage

Hydro-Thermal
Scheduling
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Hydro-Thermal Scheduling
O.Dowson and L. Kapelevich (SDDP.jl)

• The goal is to operate one thermal generator and N hydro generators in a valley chain over τ stages, 
considering the rainfall uncertainty.  In this example stages – 120 (10 years, 12 months per year) 

• State variables: the volume in reservoir (hydro generator) i = 1, . . . , N
• Decision variables: 

• the power generated by the thermal generator
• the water from reservoir i = 1, . . . , N used for power generation
• the water spilling out of reservoir i = 1, . . . , N;

• Random variables: rainfall
• The stagewise cost for power generation = thermal generator cost + hydro generators cost
• Assuming 10 possible realizations for rainfall at any stage, the number of scenarios is 𝟏𝟎𝟏𝟐𝟎



SAA
Function

Algorithmic
Approximation

Function

Compromise
Function

Processor 1

Processor 2

Processor M

Processor m

Distributed Optimization

SDDP-type algo

SDDP-type algo

SDDP-type algo

Averaging

Output
Compromise 

LB

Evaluate Compromise 
Policy for UB

'True'
Function

Aggregated Validation

Sampling

A Meta-Algorithm with 
Compromise Policy



Computational Study
• 4 hydro generators and 1 thermal generator 
• 24/48/72/96/120 stages
• Compare SDDP and Our Extensions

• Meta-Process + SDDP
• Meta-Process + Incremental Sampling (ODDP)



Computational Study - Contd



Two-Stage Combinatorial Programming:
Stochastic Facility Location Problem



Ensemble Methods for SIP

‘true’ problem

Replication 1 Replication 2 Replication M

Solve 
In parallel



Kernel Method for SIP:  Aggregation in 
Space of Solution Values

• Solve multiple replications, candidate solutions

• Define kernel function:

• Define Gram Matrix:  

• Define Centroid: 

• For any , we have:  

• Compromise Decision:  



SFLP Properties

Regional Demand Aggregation (Approximation):
• Geometric Center (Hierarchical logistics): geometric center of all demand locations in

one region
• Sampled Center (Tele-communication): in each scenario, sample the demand locations

in one region and find that center
• Weighted Center (Military logistics): : in each scenario, sample the demand locations

and the associated quantity to formulate the weighted center



Computations using bagging/compromise solution
Function value estimate at
compromise decision

. k=

Reduced std compared with
ordinary SAA (i.e., one rep)



Computational times for
bagging/compromise solution

• `Opt. Time’ :the time to solve 30 
replications sequentially, where each 
one is solved with Benders 
Decomposition algorithm.

• `Agg. Time’: the time for aggregation 
calculation, which includes the time to 
find the bagging and compromise 
solutions and compare whether these 
two are equal.



Computational View of Decision/Policy Validation
I. Two-Stage Stochastic Linear Programming

– Use Compromise Decisions with Prox Term 

II. Multi-stage Stochastic Linear Programming
– Use Compromise Policies with Prox Term

III. Two-Stage Stochastic Combinatorial Programming
– Use Kernels for Compromise Decisions

Conclusions:  If you parallelize SAA 



Computational View of Decision/Policy Validation
I. Two-Stage Stochastic Linear Programming
– Compromise Decisions 

II. Multi-stage Stochastic Linear Programming
– Compromise Policies 

III. Two-Stage Stochastic Combinatorial 
Programming

– Kernels allow Compromise Decisions

Consider a New Slogan  
If you Parallelize, Do Compromise 


