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Many success stories
Modern learning algorithms have been extremely successful
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Why do we need
Theoretical Foundations?



Catastrophic Failures

Microsoft silences its new A.l Tesla's "Full Self Driving" Beta Is Just
bot Tay, after Twitter users Laughably Bad and Potentially Dangerous

teach it racism [Updated] If you think we're anywhere near fully autonomous cars, this video might convince you otherwise.

Sarah Perez @sarahintampa / 7:16 AM PDT » March 24, 2016

NOW IT'S TIME TO ROAM.

The Grim Conclusions of the
Largest-Ever Study of Fake News
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Hitting the S-curve
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Need more principled understanding...

Modern learning algorithms increasingly used in human facing services

l 0y | f“” ”‘.




Existing Foundations?

A contemporary title for papers/talks:
Theoretical Foundations for X

X= deep learning, Reinforcement learning, Al, ...
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Why do we Need “Stronger” Foundations?



Answer |: Inability to explain contemporary practices
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Answer ll: current theory fails even in toy settings...

Existing theory operates with unrealistic hyper-parameter choices
(very small step size, very wide networks, very large init. scale, etc.)

theory hyperparameters practical hyperparameters

existing theory does not apply in practical regimes...




Historical analogy to theory of physics

Ptolemy’s model Copernican Kepler’s law of
—— heliocentrism planetary motion
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Stronger Foundations




Motivation: overparameterization without overfitting

# of parameters >> # of training data

overfitting

just right!



Mystery |: Optimization
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Challenge:
How to establish global convergence of gradient descent from random init.?




Mystery Il: Generalization

Many global optima in the training loss

P ABIORICISERM)

training loss test loss

Can reach different global optima with different init. scale



Mystery Il: Generalization (cont.)

Can reach different global optima with different init. scale

Existing theory

107!

=@ training error
10-24 =@= test error

* Neural Tangent Kernel (NTK)/Lazy/
Linear regime

* Neural net behaves like kernel methods

Practice
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scale of initialization

Challenge:

How to establish generalization of vanilla gradient descent from small random
initialization?




Prelude: Overparameterized Least Squares

. 1 2 . nxp
= — — < n.
i L£(9) 5 | X0 —yl;, with XeR and n<p

Gradient descent starting from 8 has three properties:

@ Global convergence

e Converges to a global _— Gradient
optimum which is
closest to 6

@ Total gradient path
length is relatively short




Overparameterized nonlinear Least Squares

2
min £(0) := ||f( ) = yllz, »
where
(Y1 -f(m1;0>-
Y2 f(x2;0)
y:=| .| eR" f(O):= _ e R"”, and n <p.
| Yn | _f(wm 0)_

Gradient descent: start from some initial parameter @y and run

0T+1 =0, — T,TVL(OT)a

VL(6) =T(0)" (f(6) —y).

0f(xi,0)

Here, J(0) € R™*P is the Jacobian matrix with entries J;; = 00,



Overparameterized nonlinear Least Squares

Under some technical assumptions which hold when
@ network is sufficiently wide
@ initialization is sufficiently large

Then along the trajectory of gradient descent

f(8-) ~ f(6o) + T (60) (6 — 60)
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f(0-) = f(6o) + T (00) (6 — 60)

Historical notes

e First usage of linearization principle (?) [Soltanolkotabi, Javanmard, Lee
2017]

o popularized by [Jacot et. al. 2018], [Du et. al. 2019], [Oymak and
Soltanolkotabi 2019], [Arora et. al. 2019] and many others



Lazy vs. non-lazy training

Embed hidden nodes as vectors

m
X — Z v,ReLU (WZ,;X)
=1

trained model

non-Lazy

existing theory does not apply in practical regimes...




Learning beyond the lazy regime
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 |Low-rank reconstruction
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* Deep linear networks

« One-hidden layer networks




Part I: Low-rank reconstruction
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Low-rank reconstruction

« Measurement model:

vi={(AXY") i=12,...,n & y=4d(XY)

d,

with signal X € R & Y € R%*" and measurement matrices A, € R%*%

« Optimization formulation:
min Z(U,V) := min — 2 : UVT))2

UeR“>*" & VeRD2*" UeRY¥ &VeR®xr 4

P2 dll-

- Algorithm: [Um] ~ [Ut— ,MVUg(Uth)]
Vi i V,—uVyZU, V)

v =<V

random init. matrix




Challenge |: Nonconvexity

« Spectral init.+local convergence « Landscape analysis
Wirtinger Flow, Procrustes Flow, etc. by us

JUH: Rene, ... [Sun et. al.]), [Ge et. al.], [Bhojanapalli et. al ], ..
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Challenges:

How to establish global convergence of vanilla gradient descent from small
random initialization?




Challenge Il: Generalization

Interested in the overparameterized regime

r(dl + dz) > n r*(dl + dz)

#params in model # training data m

With large initialization global convergence Exampler. =5 & n = 5r.d
occurs as soon as rd 2 n [Oymak & S. ‘19] 104 [T e e 180 fratrersor

—e— 1 = 180 test error
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Many global optima
error
Small training loss £ (U, V) = 0 1075
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Challenge:

How to establish generalization of vanilla gradient descent from small random
initialization?




Key idea: implicit spectral bias of GD

GD + overparameterization = power method on spectral initialization
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Our result

T
For simplicity, assume Kk = IXY7] = 1 and Gaussian mapping A,
0, (XYT)
Theorem (Xie, Stoeger & Soltanolkotabi '22)
Assume
O 7> Ty

on Z, ’T',%(dl e dz)
@ small random init

o |Y0| = o |Y| withU e RE*" &V € REX™ jid. N(0,1) entries
Vo 1%
o as ...

Then, w.h.p., after T' < ... iterations

[Urvi - XY7|,

< Iv(d d 21/16
”XY-T”F NPOY( 1+ 2,7'*,7")&




Some comments

Gaussian assumption — Restricted Isometry Property of order 2r. + 1

Case r = rx first deterministic result for GD with random init.

- Random results based on leave-one-out [Chen-Chi-Ma 2019]
Special case r = d by [Li et. al. 18] proving conjecture of [Gunasekar et. al.]

- Sample size goes to infinityas a — 0

- many other technical benefits



Proof sketch



Reduction to symmetric



Symmetrization |

Onl X1 A
Symmetrization operation Sym(A) := { } .

AT O'TLQXTLQ
Symmetrize measurements B(X)k = (Bk,X), By :=Sym(Ay)

Lift variables W= M W, = {V] Z = m and  Z := [_Y]

Loss reformulated as

1
LW) = E||d(UVT) - AXYD]?,
1
= S| BlsymUVT) — BlsymXY )2,

1 - .
= JIBWW) — BZZ") ~ (BOWW") ~ BEZL') |,



Symmetrization |l

When UTU ~ VIV = WIWx~ 0
As if we have

How to show UIU_~ VIV_2272?

We show

||UTTUT — VTTVT”F < C||UgU0 - VgVo”F

Small at initialization




Proof of 1UV7U. - VIV i, < culu, - VIV,

B: =V VvV, -wliw,

* Lemma: | Btll < | Boll F +26(L(Vo, Wo) = L(V;, Wr))
« Key idea: VIV L(Ve, We) = Vw L(Ve, W) T W,

* Proof of Lemma:

By =(Ve = pVy L(Ve, W) (V; = wVv L(V,, W)
- (Wi = pVw L(Ve, W) T (W, = pVw L(Va, We))
=V 'V, + Vv L(Vie, W) T vy L(Ve, Wr)
- WIW, - 12w L(Ve, W) T Vi L(Vi, We)
=B, + (Vv L(Ve, W) T Vv L(Vy, Wy) = Vw L(Vi, W) TV L(Vi, W)).

« Final step

| Ber1 = Bellr < (| Vv L(Ves W) B + |V £(Ve, W) | 7)
<2p(L(Ve, Wi) = L(Vis1, Wia1)).



Symmetric case

U=V



How does small initialization help?

» Look at the first gradient:

- VZ(U,) = g*d (XX - U,U{) U,
~ d*of (XXT) U, := ZU,

« Hence

U =U,—uVZ (UO) ~ (I+,uZ) U,



Role of randomness+overparameterization

« Hence, for small t
t ~

« Up to normalization, this is the power method!

- Since A, are Gaussian, w.h.p.

Z = oo (XXT) = Z(AZ,XXT)A ~ XX7
=1



s this really true?

Setr=r.=1,d=2,n=06




Convergence phases
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Phase I: spectral/alignment phase Phase II: saddle avoidance phase Phase III: local refinement phase

@ Phase |: spectral phase
@ Phase |l: saddle avoidance phase

@ Phase Ill: refinement phase



Saddle avoidance and local convergence phase
1 / (
/‘\#’f\ /

i

U, = UW W, + U, (1- W,W,")

N
signal term .
noise term

Decompose

W, € R™"*" properly chosen isometric embedding
@ saddle avoidance: minimum eigenvalue of U;W; grows

@ local convergence: signal term converges to X, while the noise term stays
small (scaling with «)



Insights and predictions



How does more overparameterization help?

n = 200, . =5, m= 10nr,
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Prediction by our theory: Spectral phase needs ¢, < 5111 (27”) iterations
(U ~ (I+ pZ)" Up)



Overparameterization does not affect other phases
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Part Il: one-hidden layer neural nets

Alex Damian Jason Lee



Learning polynomials with neural nets
+ Inputs: X, ~ N (O,I)

. Labels: Yy, =g (I‘Jxl) i=12....n

g: R R

poly of degree p U= eR™, r<<d

. Model: X = fu w(X) = v ReLU (Wx)

n

1
- Loss: Z(V,W) :=— Z (v —fv,w(Xi))2

n
i=1

« Algorithm: GD from small init



Our Result

Data Model x+~ fipw®X) = v ReLU(Wx +b)

Yi=8 (UXi)

g R R
poly of degree p

Theorem (Ghorbani et. al. '20)
In the lazy/NTK regime need at least > dP samples

Theorem (Damian, Lee & Soltanolkotabi '22) I

@ Hidden unites 2 rP
@ Run GD from small random init
Then, w.h.p., after T' =< ... iterations

d* et
n

Emfy vaT7bT1WT(m) - y‘ S \/

L

need n>d>+r**l vs. n>dP for NTK/lazy regime



Transfer Learning Setup

Source Data (n samples) Target Data (N samples)
.- .
v = gs (Ux;) v = g7 (Ux;)

85,87 ' R'— R

poly of degree p

train both layers Retrain last layer
on source data on target data




Transfer Learning Result

Source Data (n samples) Target Data (N samples)
v = g5 (Ux;) v = g7 (Ux))
train both layers Retrain last layer

on source data on target data

Theorem (Damian, Lee & Soltanolkotabi '22)

@ Hidden unites 2 rP

Then, w.h.p., after T’ =< ... iterations

d2 + rip+l rdp+1
Em7yNT |f'UT,bT,WT (m) - y| 5 \/ —l_ N

n

N

Y —_—

# data for learning representation  # data for learning head
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Very brief proof sketch



Consider Hermite polynomials in higher dimensions

S x)=x, S,(x)=xx'-1,

We have the series

By Stein



Many intricate components

Lemma 1 Consider a polynomzial of degree p given by
T
g(z) = Z Vsy,...,sr H Z;] :
s;ENU{0}: 370, s;<p j=1

and denote v as the vector of all of the coefficients vy, . s, . Also let U € R™*%. Then, as long as

.....

27p (C’p?’ﬂ log n)p (6\/‘_1 (\/2_CP2)p) ’

n > max | cd 52 )

holds for some B8 > 1 and § > 0. Then,

<5\ /E[¢?(Uz)]

1 n
- ZQ (Uz;) Zil (T, 450y — B [9 (Uz) wﬂ{meerzo}}

1=1

holds with probability at least 1 — 2e¢ — 2~ (B=1),



Conclusion

+ Stronger Theoretical Foundations
- Go beyond lazy regime

- Many settings Low rank reconstruction, deep
linear networks, one-hidden layers

- Key idea: implicit spectral bias of GD




Thanks!
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