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Modern learning algorithms have been extremely successful
Many success stories



Why do we need 
Theoretical Foundations?



Catastrophic Failures



Hitting the S-curve



Need more principled understanding…
Modern learning algorithms increasingly used in human facing services



Existing Foundations?
A contemporary title for papers/talks:

Theoretical Foundations for X

X= deep learning, Reinforcement learning, AI, …



Why do we Need “Stronger” Foundations?



Answer I: Inability to explain contemporary practices
Choice of architecture Normalization

Distillation

Representation Learning/
pre-training+fine tuning



Answer II: current theory fails even in toy settings…
Existing theory operates with unrealistic hyper-parameter choices 

(very small step size, very wide networks, very large init. scale, etc.)

existing theory does not apply in practical regimes…

theory hyperparameters practical hyperparameters



Historical analogy to theory of physics
Ptolemy’s model Kepler’s law of  

planetary motion
Copernican 
heliocentrism 

Newtonian Mechanics Relativity Quantum Mechanics



Stronger Foundations



Motivation: overparameterization without overfitting

Mystery:

# of parameters >> # of training data 



Mystery I: Optimization

planted model trained model

planted model trained model



Mystery II: Generalization
Many global optima in the training loss

training loss test loss

Can reach different global optima with different init. scale



Mystery II: Generalization (cont.)

Existing theory

• Neural Tangent Kernel (NTK)/Lazy/
Linear regime


• Neural net behaves like kernel methods 
Practice

Can reach different global optima with different init. scale



Prelude: Overparameterized Least Squares



Overparameterized nonlinear Least Squares



Overparameterized nonlinear Least Squares



non-Lazy

Lazy vs. non-lazy training

existing theory does not apply in practical regimes…

Lazy

Embed hidden nodes as vectors

trained model

x ↦
m

∑
ℓ=1

vℓReLU (wT
ℓx)

|v1 |w1

|v4 |w4

⋅

⋅



Learning beyond the lazy regime

• Deep linear networks

• One-hidden layer networks

• Low-rank reconstruction



Part I: Low-rank reconstruction

Collaborator:  

Dominik Stoeger Changzhi Xie



Low-rank reconstruction
• Measurement model:

yi = ⟨Ai, XYT⟩ i = 1,2,…, n ⇔ y = 𝒜 (XYT)

• Optimization formulation:
min

U∈ℝd1×r&V∈ℝd2×r
 ℒ(U, V) := min

U∈ℝd1×r&V∈ℝd2×r
 1
4

n

∑
i=1

(yi − ⟨Ai, UVT⟩)2

• Algorithm: [Ut+1

Vt+1] = [Ut − μ∇Uℒ(Ut, Vt)
Vt − μ∇Vℒ(Ut, Vt)]

 random init. matrix[U0

V0] = α [U
V]

with signal  and measurement matrices  X ∈ ℝd1×r* & Y ∈ ℝd2×r* Ai ∈ ℝd1×d2

X
YT

r* d2

d1

r ≥ r* U
VT
d2r

d1



Challenge I: Nonconvexity
• Spectral init.+local convergence

Wirtinger Flow, Procrustes Flow, etc. by us 
JUH: Rene, ,… 

• Landscape analysis
[Sun et. al.]), [Ge et. al.], [Bhojanapalli et. al.], …  



Challenge II: Generalization

• With large initialization global convergence 
occurs as soon as  [Oymak & S. ‘19]


•

rd ≳ n

Interested in the overparameterized regime


r(d1 + d2) ≥ n ≳ r*(d1 + d2)

#params in model # training data true 

Many global optima


• Small training loss  


• Test error  
potentially large

ℒ(U, V) ≈ 0

∥UVT − XYT∥F

Example 
r* = 5  &  n = 5r*d

Scale of init 
(α)

Test error




Key idea: implicit spectral bias of GD

GD + overparameterization = power method on spectral initialization 

gradient descent

power method on  
spectral matrix

 angle with top 

eigen directions of spectral init.

θGD  &  θP



Our result

For simplicity, assume  and Gaussian mapping 
κ :=
∥XYT∥

σr*
(XYT)

≍ 1 Ai



Some comments

• Gaussian assumption  Restricted Isometry Property of order 


• Case  first deterministic result for GD with random init. 


- Random results based on leave-one-out [Chen-Chi-Ma 2019]


• Special case  by [Li et. al. 18] proving conjecture of [Gunasekar et. al.] 


- Sample size goes to infinity as  


- many other technical benefits

↦ 2r* + 1

r = r*

r = d

α → 0



Proof sketch



Reduction to symmetric



Symmetrization I

• Symmetrization operation

• Symmetrize measurements

• Lift variables

• Loss reformulated as

ℒ(W) =
1
2

∥𝒜(UVT) − 𝒜(XYT)∥2
ℓ2

=
1
4

∥ℬ(sym(UVT)) − ℬ(sym(XYT))∥2
ℓ2

=
1
4

∥ℬ(WWT) − ℬ(ZZT) − (ℬ(W̃W̃T) − ℬ(Z̃Z̃T) ∥2
ℓ2



Symmetrization II
• When UTU ≈ VTV  ⇒  WTW̃ ≈ 0

ℒ(W) =
1
4

∥ℬ(WWT) − ℬ(ZZT)∥2
ℓ2

& ℒ(W̃) =
1
4

∥ℬ(W̃W̃T) − ℬ(Z̃Z̃T)∥2
ℓ2

• How to show  ????UT
τ Uτ ≈ VT

τ Vτ

∥UT
τ Uτ − VT

τ Vτ∥F ≤ c∥UT
0 U0 − VT

0 V0∥F

• We show

• As if we have

Small at initialization



Proof of ∥UT
τ Uτ − VT

τ Vτ∥F ≤ c∥UT
0 U0 − VT

0 V0∥F

• Lemma:

• Key idea:

• Proof of Lemma:

• Final step



Symmetric case 
U = V



How does small initialization help?

• Look at the first gradient:

−∇ℒ(U0) = 𝒜*𝒜 (XXT − U0UT
0) U0

≈ 𝒜*𝒜 (XXT) U0 := ZU0

• Hence

U1 = U0 − μ∇ℒ (U0) ≈ (I + μZ) U0



Role of randomness+overparameterization

• Hence, for small t

Ut ≈ (I + μZ)t U0 =: Ũt

• Up to normalization, this is the power method!

Z = 𝒜*𝒜 (XXT) =
1
n

n

∑
i=1

⟨Ai, XXT⟩Ai ≈ XXT

• Since  are Gaussian, w.h.p.Ai



Is this really true?
Set 
r = r* = 1, d = 2, n = 6



Convergence phases



Saddle avoidance and local convergence phase



Insights and predictions



How does more overparameterization help?



Overparameterization does not affect other phases



Part II: one-hidden layer neural nets

Collaborators:  

Alex Damian Jason Lee 



Learning polynomials with neural nets

• Labels: yi = g (Uxi) i = 1,2,…, n

 
poly of degree p
g : ℝr ↦ ℝ

• Inputs: xi ∼ 𝒩 (0, I)

• Model:          x ↦ fv,W(x) = vTReLU (Wx)

• Loss:         ℒ (v, W) :=
1
n

n

∑
i=1

(yi − fv,W(xi))2

• Algorithm:   GD from small init

U = ∈ Rr×d,  r < < dr
d



Our Result

yi = g (Uxi)
 

poly of degree p
g : ℝr ↦ ℝ U ∈ ℝr×d r < < d

Data Model x ↦ fv,b,W(x) := vT ReLU (Wx + b)

need for NTK/lazy regimen ≳ d2 + r4p+1 vs. n ≳ dp



Transfer Learning Setup

yi = g𝒮 (Uxi)

Source Data (n samples)

yi = g𝒯 (Uxi)

Target Data (N samples)

U ∈ ℝr×d r < < d

 
poly of degree p
g𝒮, g𝒯 : ℝr ↦ ℝ

train both layers 
on source data

Retrain last layer 
on target data



Transfer Learning Result
Source Data (n samples) Target Data (N samples)

yi = g𝒮 (Uxi) yi = g𝒯 (Uxi)
train both layers 
on source data

Retrain last layer 
on target data



Very brief proof sketch



Consider Hermite polynomials in higher dimensions

S1(x) = x, S2(x) = xxT − I, …

We have the series

By Stein



Many intricate components



Conclusion
• Stronger Theoretical Foundations


- Go beyond lazy regime


- Many settings Low rank reconstruction, deep 
linear networks, one-hidden layers


- Key idea: implicit spectral bias of GD
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