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Convex-Concave Min-Max

min
x∈Rd

max
y∈Rn

L(x , y) (Min-Max)

where

L(x , y) =
n∑

i=1

[
〈Aix , y

(i)〉 − h∗i (y (i))
]

+ g(x)

= 〈Ax , y〉 − h∗(y) + g(x),

h∗i : R→ R ∪ {+∞} is convex conjugate of hi defined by
h∗i (t) := sups(st − hi (s)) (convex and extended-valued);

g : Rd → R ∪ {+∞} (convex and extended-valued);

h∗(y) =
∑n

i=1 h∗i (y (i)) (separable);

Ai ∈ Rd is a row vector;

A is the n × d matrix with rows Ai .
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More Specs

We consider cases in which A is dense and A is sparse.

In the case of sparse A, we assume for analysis that g is separable, that is,

g(x) =
d∑

j=1

gj(x (j)).

All algorithms make use of the prox-operator denoted for diagonal
weighting matrix T � 0 and function g by proxT,g and defined

proxT,g (x) := arg min
u

1
2‖u − x‖2

T−1 + g(u)

= arg min
u

1

2

d∑
i=1

(x (i) − u(i))2

Tii
+ g(u).

Assume that we can compute prox-operators for g and h∗i “easily.”
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Case I: Empirical Risk Minimization (ERM)

Ubiquitous in statistics and machine learning.

min
x∈Rd

n∑
i=1

hi (Aix) + g(x). (ERM)

Least squares: hi (t) = 1
2 t2;

`1 regression: hi (t) = |t|;
Hinge loss: hi (t) = max(t, 0) (used in SVM, neural nets);

Regularization: Tikhonov g(x) = λ‖x‖2
2, `1: g(x) = ‖x‖1;

TV regularization: hi (t) = ‖t‖2, Ai ∈ R2×d ;

logistic regression, least absolute deviation, ...
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Case II: Linearly Constrained Optimization

min g(x) s.t. Aix ∈ Ci , i = 1, 2, . . . , n, (LinOpt)

where Ci = {bi} (equality constraints) or Ci = {t : t ≥ bi} (inequality).

Recall that we need to compute prox-operators involving convex g .

Trivial if g is linear.

Can be arranged (possibly via reformulation) if g is convex quadratic.

For algorithm output xout, we could bound the number of iterates to attain

E|g(xout)− g(x?)| ≤ ε, and

E dist(Axout,C ) ≤ ε.
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Case III: Generalized LP

min cT x + r(x) s.t. Ax = b, x ∈ X , (GLP)

which can be written in min-max form as

min
x∈X

max
y∈Rn

L(x , y) = 〈Ax , y〉+ cT x + r(x)− bT y .

X ⊂ Rd is closed and convex, r is convex. We assume that the following
modified prox-operator is easy to compute:

proxX ,r (x̂) := arg min
z∈X

1
2‖z − x̂‖2

2 + r(z).

Ordinary LP: X = Rd
≥0 and regularized LP: X = Rd

≥0, r(x) = λ‖x‖2
2;

Reinforcement Learning [De Farias and Van Roy, 2003]

Optimal Transport [Villani, 2009]

DRO (f -divergence, Wasserstein) (see below)

relaxed Neural Net verification [Liu et al., 2020].
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Case IIIa: Distributionally Robust Optimization (DRO)
Setup: sample vectors {a1, a2, . . . , an} in Rd with labels {b1, b2, . . . , bn},
where bi ∈ {1,−1}. Usual ERM problem is

min
w

1

n

n∑
i=1

h(bia
T
i w)

where h : R→ R ∪ {+∞} is convex (e.g. hinge loss).

Wasserstein metric defines a distance between distributions P and Q
over Rd × {−1, 1}, based on cost

ζ((a, b), (a′, b′)) = ‖a− a′‖1 + κ|b − b′|
for some κ > 0;

Pn = 1
n

∑n
i=1 δ(ai ,bi ) is the empirical distribution defined by the data;

Seek sup of the objective over the ball of radius ρ around Pn (in space
of distributions over (a, b)) defined by the Wasserstein metric:

min
w∈Rd

sup
dist(P,Pn)≤ρ

EP[h(baTw)].
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GLP formulation of the DRO problem above is

min
w ,λ,u,v ,s,t

ρλ+
1

n

n∑
i=1

si

s.t. ui = bia
T
i w , i = 1, 2, . . . , n,

vi = −ui , i = 1, 2, . . . , n,

ti = 2κλ+ si , i = 1, 2, . . . , n,

h(ui ) ≤ si , i = 1, 2, . . . , n,

h(vi ) ≤ ti , i = 1, 2, . . . , n,

‖w‖∞ ≤ λ/M.

X is defined by the last 3 constraints. The corresponding prox operation is
separable so can be implemented easily.
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Algorithms: The Basics

Formulation (reminder):
min
x∈Rd

max
y∈Rn

L(x , y) (Min-Max)

L(x , y) =
n∑

i=1

[
〈Aix , y

(i)〉 − h∗i (y (i))
]

+ g(x)

= 〈Ax , y〉 − h∗(y) + g(x),

Gradient Ascent-Descent (GDA):

x̄k+1 = proxτ,g (x̄k − τA>ȳk)

ȳk+1 = proxσ,h∗(ȳk + σAx̄k+1),
(GDA)

for positive step sizes τ and σ. 1

1T = τ I in our earlier definition of prox.
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Algorithms: The Basics
Primal-Dual Hybrid Gradient (PDHG) [Chambolle and Pock, 2011] uses
extrapolation in the x step:

x̄k+1 = proxτ,g (x̄k − τA>(2ȳk − ȳk−1))

ȳk+1 = proxσ,h∗(ȳk + σAx̄k+1),
(PDHG)

Equivalent form of PDHG:

x̄k+1 = proxτ,g (x̂k − τA>ȳk) (1a)

ȳk+1 = proxσ,h∗(ȳk + σAx̄k+1) (1b)

x̂k+1 = x̄k+1 − τA>(ȳk+1 − ȳk). (1c)

[Chambolle and Pock, 2011] discusses connections to Douglas-Rachford,
Extrapolated gradient, ADMM.

[Aragón-Artacho et al., 2020] show application of DR to finding
intersection of sets, pictures show the benefits of extrapolation.
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Algorithms: Additional Features

Theoretical convergence / complexity properties of these algorithms can
be improved (in some cases, including strong convexity / concavity and
sparsity) by adding extra features.

Coordinate descent: e.g. update random element(s) of y in (1b)
instead of the whole vector.

Variance Reduction: Adjust the update formula for x to account for
noise arising from coordinate update of y .

Dual Averaging: At step k , use a gradient term that is a weighted
average over all previous iterations.

Importance sampling: Apply different weights to different components
of each update (e.g. weight matrix T in definition of prox).

Iterate averaging: Output a weighted average of iterates, rather than
the final iterate for x .

Some are used by PURE-CD and VRPDA2.
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Measuring Approximate Optimality
Algorithms can be compared using rate of reduction of a gap function that
measures near-optimality. Define G as follows:

G (x ′, y ′, x , y) := L(x ′, y)− L(x , y ′)

= [g(x ′) + 〈Ax ′, y〉 − h∗(y)]− [g(x) + 〈Ax , y ′〉 − h∗(y ′)],

and for compact set Z ⊂ Rd × Rn define the gap function

Gap(x ′, y ′) := max
(x ,y)∈Z

G (x ′, y ′, x , y).

Suppose output (xK , yK ) is generated by an algorithm after K iterations.

If the algorithm is random, can measure:

“max of expectation” max(x ,y)∈Z EG (xK , yK , x , y);

“expected gap” (stronger)

E max
(x ,y)∈Z

G (xK , yK , x , y) = EGap(xK , yK ).
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Complexity Analysis

Find upper bounds on the number of flops needed to reduce (expected)
gap measures below a given threshold ε > 0. Particularly interested in
dependence on ε as well as

Dimensions d (for primal x) and n (for dual y);

size of A: e.g. ‖A‖, maxi=1,2,...,n ‖Ai‖, or
∑n

i=1 ‖Ai‖;
nnz(A) (for sparse A);

Distance between (x0, y0) and the optimum (x?, y?).

Some algorithms (e.g. stochastic PDHG [Chambolle et al., 2018]) have
less impressive bounds yet perform well for some types of problems.
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PURE-CD: Dense A [Alacaoglu et al., 2020]

Define coordinate selection probabilities p(i), i = 1, 2, . . . , n, with
P = diag(p(1), . . . , p(n))

1: Initialize x0 ∈ dom g , y0 ∈ dom h∗

2: for k ≥ 0 do
3: x̄k+1 = proxTk ,g (xk − TkA>yk)

4: Pick ik ∈ [n] with Pr(ik = i) = p(i)

5:
[
yk+1 = proxσk ,h∗(yk + σkAx̄k+1)

]
ik

, [yk+1 = yk ]\ik
6: xk+1 = x̄k+1 − TkΘkA>P−1(yk+1 − yk)
7: end for

Notation:

[·]J means that the formula is executed on only the components
indexed by the set J.

[·]\J means that the formula is executed on all components except
those indexed by the set J.
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PURE-CD: Dense A: Notes

Cost per iteration: O(d)

proxTk ,g ,

calculate Aik x̄k+1,

update A>yk+1.

After K iterations, output xK = average of x̄1, x̄2, . . . , x̄K .
(If needed, also output a weighted average of the yk .)

Tracks PDHG with key differences:

diagonal scalings: Tk , P, Θk ;

Update just one (random) component of y in lines 4 and 5.
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PURE-CD Dense: Complexity Result for LinOpt

min g(x) s.t. Aix ∈ Ci , i = 1, 2, . . . , n.

Assume that primal-dual solution (x?, y?) exists. For scaling matrices:

Tk = T = τ I , τ =
1∑n

i=1 ‖Ai‖
,

Σk = Σ = diag(σ(1), . . . , σ(n)), σ(i) =
γ

‖Ai‖
, γ ∈ (0, 1),

p(i) =
‖Ai‖∑n
i=1 ‖Ai‖

, Θk = θI = I .

Define xK = 1
K

∑K
k=1 x̄k . Then for D1, D2 dep. on (x0, y0) and (x?, y?):

E|g(xK )− g(x?)| ≤ 8D2

γ(1− γ)

∑n
i=1 ‖Ai‖

K
,

E
[
dist(AxK ,C )

]
≤ 8D1

γ(1− γ)

∑n
i=1 ‖Ai‖

K
,

with cost O(d) per iteration.
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PURE-CD Dense: Complexity Result for Min-Max

Here need more complicated settings of Tk (used in the algorithm) and Σk

(used only in analysis). Set Θk ≡ I and σ(i) = γ/‖Ai‖, some γ ∈ (0, 1).

Weighted averages of x̄k and yk for k = 1, 2, . . . ,K yield outputs (xK , yK ).

Use a special choice of starting points x̄1, y1 due to [Song et al., 2021b]

Obtain a complicated bound for EGap(xK , yK ) as a function of K –
ultimately, arithmetic convergence at O(1/K ) rate, after a burn-in period
of slow linear convergence.

Can guarantee EGap(xK , yK ) ≤ ε with expected complexity

K = Õ

(
nd + DZ

nd maxi ‖Ai‖
ε

)
iterations,

where DZ depends on set Z and (x0, y0) and Õ indicates “ignoring log
terms.”

Wright (UW-Madison) Primal-Dual Coordinate Methods Erice, May, 2022 19 / 37



PURE-CD: Sparse A [Alacaoglu et al., 2020]

Recall notation J(i) := {j ∈ [d ] : Ai ,j 6= 0}

1: Initialize x0 ∈ dom g , y0 ∈ dom h∗;
2: for k ≥ 0 do
3: Pick ik ∈ [n] with Pr(ik = i) = 1

n

4:

[
x̄k+1 = proxτk ,gj

(
xk − τk(A>yk)

)]
J(ik )

5:
[
yk+1 = proxσk ,h∗(yk + σkAx̄k+1)

]
ik

6: [yk+1 = yk ]\ik

7:

[
xk+1 = x̄k+1 − τkθkAT

ik
(y

(ik )
k+1 − y

(ik )
k )

]
J(ik )

8: [xk+1 = xk ]\J(ik )

9: end for
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PURE-CD: Sparse A: Comments

Assumes that g is separable: g(x) =
∑d

j=1 gj(x (j)).

Similar but not identical to the dense version of PURE-CD.

I Calculate only the J(ik) components of the intermediate vector
x̄k+1, which are needed to update the ik component of y .

I Since xk+1 depends componentwise on x̄k+1, we calculate only
the J(ik) components of x̄k+1.

I But in the dense version, all components of x̄k+1 are required to
obtain xk+1.

I Thus PURE-CD: Sparse needs its own convergence theory.

Cost for iteration k is O(|J(ik)|) not O(d).

(Expected cost is O(nnz(A)/n).)
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PURE-CD Sparse: Complexity Results for Min-Max

Focus on results where strong convexity is present in g and/or h∗ (both
separable functions).

Each gj has modulus of convexity µg ≥ 0;

Each h∗i has modulus of convexity µh ≥ 0,

Results are for last iterates xK and/or yK , not averaged iterates.

When µg > 0 and µh > 0, we have E
[
‖xK − x?‖2 + ‖yK − y?‖2

]
≤ ε with

expected complexity

Õ

((
nnz(A)

(
1 +

maxi ‖Ai‖√
µhµg

))
log ε−1

)
.

Choices of Θk , σ
(i)
k , Tk do not depend on k , but require knowledge of µg

and µh
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PURE-CD Sparse: Complexity Results for Min-Max

When µg > 0 but possibly µh = 0 (strong convexity in g only) can make a
(complicated) choice of parameters to ensure that E

[
‖xK − x?‖2

]
≤ ε

with expected complexity

O

(
nnz(A)

(
1 +

√
D?

ε
max

(
1,

maxi ‖Ai‖
µg

)))
,

When µh > 0 but possibly µg = 0 (strong convexity in h only) a different

(still complicated) choice of parameters σ
(j)
k , τ

(j)
k , Θk ensures that

E
[
‖yK − y?‖2

]
≤ ε with expected complexity

O

(
nnz(A)

(
1 +

√
D?

ε
max

(
1,

maxi ‖Ai‖
µh

)))
,
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Complexity Comparisons

The PURE-CD complexity bounds are compared with various other
algorithms for Min-Max, or special cases of it:

PDHG [Chambolle and Pock, 2011]

SPDHG [Chambolle et al., 2018]

VRPDA [Song et al., 2021b]

CLVR [Song et al., 2021a]

SPDAD [Tan et al., 2020]

VRVI [Carmon et al., 2019, Alacaoglu and Malitsky, 2021]

Katyusha [Allen-Zhu, 2017]

SPDC [Zhang and Lin, 2015]

In each case, PURE-CD matches or improves the complexities of these
alternatives, in terms of their dependence on n, d , measures of A, ε.

A typical improvement is ‖A‖ → maxi ‖Ai‖ – a factor of up to
√

n.
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Comments on Proofs

The proofs of these complexity results are extremely technical, involving
mostly elementary manipulation of inequalities.

Telescoping sums over iterations k = 1, 2, . . . ,K is used often, and
convexity is essential.

But considerable expertise is needed to choose the algorithmic parameters

Tk , σ
(i)
k , Θk to achieve the desired cancellations.
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VRPDA2: Another algorithm for Min-Max

[Song et al., 2021b]

1: Input: (x0, y0) ∈ X × Y, (u, v) ∈ X × Y.
2: φ0(·) = 1

2‖ · −x0‖2, ψ0(·) = 1
2‖ · −y0‖2. Initialize y1, x1, ψ̃1, φ̃1.

3: a0 = B0 = 0, ã1 = [2n maxi ‖Ai‖]−1

4: ψ1 := nψ̃1, φ1 := nφ̃1, a1 = B1 = nã1, z1 = AT y1,
5: for k = 2, 3, . . . ,K do

6: ak = min

{
ã1

(
1 + 1

n−1

)k−1

,

√
n(n+σBk−1)

2R′

}
,Bk = Bk−1 + ak .

7: Pick ik uniformly at random in [n].
8: x̄k−1 = xk−1 + ak−1

ak
(xk−1 − xk−2).

9: yk = arg miny∈Rn ψk(y) := ψk−1(y) + nak(〈−Aik x̄k−1, yik − vik 〉+ h∗ik (yik )).
10: xk = arg minx∈Rd φk(x) :=

φk−1(x) + nak〈x − u, zk−1 + (yk,ik − yk−1,ik )AT
ik
〉+ g(x)).

11: zk = zk−1 + (yk,ik − yk−1,ik )AT
ik
.

12: end for
13: return weighted averages yK and xK .
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VRPDA2: Notes
Also motivated by PDHG, similarities with PURE-CD.

Special initialization for x1 and y1. Costs one mult. by A and AT .

Extrapolation step in x (Line 8) with variable coefficient ak−1/ak .

Update a single coordinate ik of y (Line 9).

Based on averaged gradients rather than steepest descent (as in
PURE-CD

Can’t adapt to sparsity in A.

Update steps (Lines 9-10) are prox-operations on h∗ik and g .

Outputs weighted-average of xk and yk , k = 1, 2, . . . ,K as the result.

The algorithm and its analysis make heavy use of estimate sequences, in
the style of [Nesterov, 2004].

φk(x) := φk−1(x) + ak(n〈x − u, zk−1 + (yk,ik − yk−1,ik )AT
ik
〉+ g(x))

ψk(y) := ψk−1(y) + nak(〈−Aik x̄k−1, yik − vik 〉+ h∗ik (yik ))
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VRPDA2: Convergence

For general case, attain EG (xK , yK , x?, y?) ≤ ε (for weighted average
iterates) in complexity

Õ

(
nd maxi ‖Ai‖

ε

)
.

When g is strongly convex with modulus µg , get E‖x? − xK‖2 ≤ ε (for
last iterate xK ) in complexity

Õ

(
nd maxi ‖Ai‖

µg
√
ε

)
.

In PURE-CD we have the same bound 2 but with nd replaced by nnz(A).

2when maxi ‖Ai‖/µg > 1
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CLVR: Specialized to GLP [Song et al., 2021a]

min cT x + r(x) s.t. Ax = b, x ∈ X . (GLP)

Partition A into m row blocks – index partition {S1, S2, . . . ,Sm}.
1: Input: x0 ∈ X , y0 ∈ Rn, z0 = AT y0, γ > 0, L̂ > 0, σ ≥ 0,K .
2: a1 = B1 = 1

2L̂m
, q0 = a1(z0 + c).

3: for k = 1, 2, . . . ,K do
4: xk = prox 1

γ Bk r
(x0 − 1

γ qk−1).

5: Pick jk uniformly at random in {1, 2, . . . ,m}.
6: [yk = yk−1]\S jk ; [yk = yk−1 + γmak(Axk − b)]S jk ;

7: ak+1 =

√
1+σBk/γ

2L̂m
, Bk+1 = Bk + ak+1.

8: zk = zk−1 + AT
S jk

(yS jk

k − yS jk

k−1).

9: qk = qk−1 + ak+1

(
zk + c

)
+ mak(zk − zk−1).

10: end for
11: return weighted averages xK and yK .
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CLVR: Notes and Complexity

Again related to PDHD but with variations.

Averaged gradients in x , block coordinate descent in y .

Recall that specialized prox-operator involves constraint set X .

Can be implemented in a way that exploits sparsity in A

I ....but this involves intermediate vectors and is more complicated
than in Sparse PURE-CD.

Expected complexity for EG (xK , yK , x?, y?) < ε in Sparse CLVR is

O

(
nnz(A) maxi=1,2,...,m ‖AS i‖

ε

)
.
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Computational Results: DRO

Wasserstein DRO described above, with `1 norm and hinge loss.

Several standard ML datasets (LIBSVM).

Implemented in Julia. Use SparseArrays to support sparse vectors
and matrices.

CLVR uses blocks to improve utilization of multiple cores.
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Comparing with General LP solvers (times)
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Adapting to sparsity with PURE-CD
Investigating adaptation to sparsity in Lasso problem, compared to other
stochastic coordinate methods

SPDHG [Chambolle et al., 2018]3: good for dense, but O(d) per
iteration cost

VC-CD [Fercoq and Bianchi, 2019]4: good for sparse, but n times
worse step size for dense

PURE-CD: good for dense & sparse
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3Stochastic PDHG: Chambolle et al., SIOPT, 2018
4Vu-Condat with coordinate descent: Fercoq, Bianchi, SIOPT, 2019
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Concluding Thoughts and Questions

Simplicity is a great virtue but it requires hard work to achieve it
and education to appreciate it. And to make matters worse:
complexity sells better.

- Edsger Wybe Dijkstra

Algorithms that are simple yet with optimal complexity properties have
taken some time to arrive. The analysis is still highly technical.

Can we simplify the analysis? Or define slightly different (but still useful)
measures of algorithm performance that admit simpler analysis?
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