

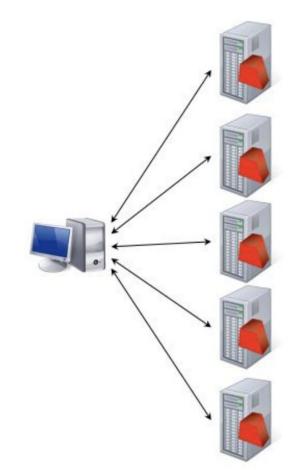
OPTIMAL METHODS FOR RISK AVERSE OPTIMIZATION OVER A NETWORK

May 20, 2022 Guanghui (George) Lan and Zhe (Jimmy) Zhang, ISyE, Georgia Tech

CREATING THE NEXT[®]

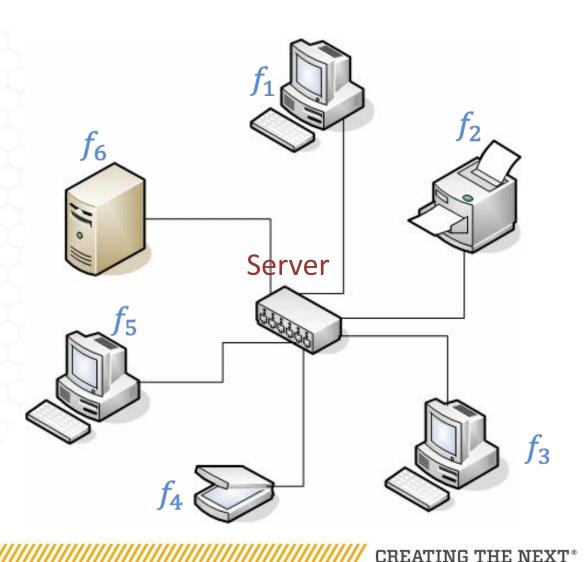
BEYOND RISK NEUTRAL?

- Risk Neutral Optimization
 - $min_{x\in X}\sum_{i=1}^m \frac{1}{m}f_i(x) + \mathbf{u}(x)$
- What if
 - One-time decision, e.g. Mars Landing Site
 - Downside risk e.g. financial portfolio
 - Empirical probability no good



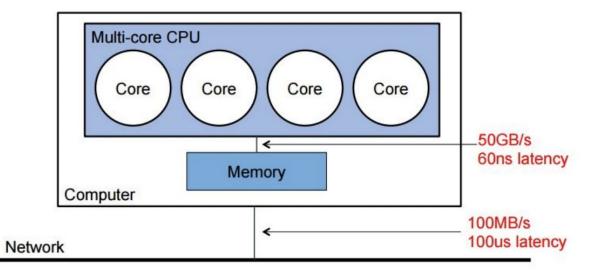
RISK-AVERSE OPTIMIZATION

- Risk Neutral
 - $\min_{x \in X} \sum_{i=1}^{m} \overline{p_i} f_i(x) + \mathbf{u}(x)$
- Coherent Risk Measure ρ
 - $\min_{x \in X} \rho [f_1(x), f_2(x), \dots, f_m(x)]$
 - $\min_{x \in X} \max_{p \in P} \sum_{i=1}^{m} \mathbf{p}_i f_i(x) + \mathbf{u}(x) \rho^*(p)$
 - Types of ρ :
 - CV@R
 - Mean Semideviation of order r, Entropic Risk
 - DRO ambiguity set



DISTRIBUTED OPTIMIZATION

- Communication is expensive:
 - L2 Cache Latency: 7ns
 - RAM ~ 60ns
 - Inside a cluster ~ 100us
 - LTE ~ 100ms



CLIMATE CHANGE PLANNING

- Infrastructure Investment for climate change mitigation
- ρ: CV@R corresponding 99% of possible scenarios
- *f_i(x)*: Long term economic cost under *jth* climate model and *kth* impact model.
 - Stored at the *i*th (worker) computing node
- Few communication rounds ⇒ Fast Computation

MIMO SYSTEM IN 5G COMMUNICATION

- Configure active antenna optimally ⇒ consistent speed for most users
- *ρ*: mean semi-deviation risk measure
- f_i : the negative downlink (uplink) speed
- Few exchange between terminal device and base station ⇒ more responsive base station



 $\min_{x \in X} \rho \left[f_1(x), f_2(x), \dots, f_m(x) \right] + u(x)$

Q: the least number of communication rounds for an ϵ *-optimal solution? Can we solve it as easily as the risk-neutral problem?*

- Communication-Efficient DRAO Method
- Communication and Computationally-Efficient DRAO-S Method
- Lower Communication Complexity Bound

DRAO: CHALLNEGE

٠

Consider smooth f_i 's $\min_{x \in X} \sum_{i=1}^{m} \frac{1}{m} f_i(x) + u(x)$ $\min_{x \in X} \max_{p \in P} \sum_{i=1}^{m} p_i f_i(x) + u(x) - \rho^*(p) + u(x)$

We found from Nesterov (1998) that max-type function is essentially smoth

 $\max\{f_1(x), \dots, f_m(x)\}$ $\leq \max\{f_1(\bar{x}) + \langle \nabla f_1(\bar{x}), x - \bar{x} \rangle, \dots, f_m(\bar{x}) + \langle \nabla f_m(\bar{x}), x - \bar{x} \rangle\} + L_f \left\| x - \bar{x} \right\|^2 / 2$

• Prox-max-update

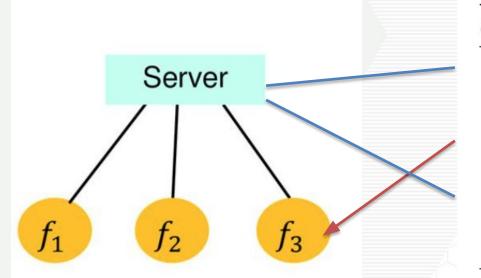
 $x^{t} \leftarrow \operatorname{argmin}_{x \in X} \max(f_{1}(\underline{x}) + \langle \nabla f_{1}(\underline{x}), x \rangle, \dots, f_{m}(\underline{x}) + \langle \nabla f_{m}(\underline{x}), x \rangle) + \frac{\eta}{2} ||x - \bar{x}||^{2}$

- Nesterov (1998) Nesterov Accelerated Gradient method, Lan (2015) Accelerated Prox-Level method
- Can we extend it
 - Coherent risk measure ρ , structured non-smooth function

DRAO: PRIMAL-DUAL TYPE METHOD

 $\min_{x \in X} \rho \left[f_1(x), f_2(x), \dots, f_m(x) \right] + u(x)$ Fenchel Linearization

 $\min_{x \in X} \max_{\pi \in \Pi} \rho\{\langle A_1 x, \pi_1 \rangle - f_1^*(\pi_1), \dots, \langle A_m x, \pi_m \rangle - f_m^*(\pi_m)\} + u(x)$



Algorithm 1 A Generic Distributed Risk Averse Optimization (DRAO) Method

1:
$$\tilde{x}^t \leftarrow x^{t-1} + \theta_t (x^{t-1} - x^{t-2}).$$

2: $\pi_i^t \leftarrow \arg \max_{\pi_i \in \Pi_i} \langle A_i \tilde{x}^t, \pi_i \rangle - f_i^*(\pi_i) - \tau_t V_i(\pi_i; \pi_i^{t-1}), \text{ and}$ evaluates $v_i^t \leftarrow A_i^\top \pi_i^t$ and $f_i^*(\pi_i^t).$ 3: $x^t \leftarrow \arg \min_{x \in X} \rho\{\langle x, v_1^t \rangle - f_1^*(\pi_1^t), \dots, \langle x, v_m^t \rangle - f_m^*(\pi_m^t)\} + u(x) + \frac{\eta_t}{2} \|x - x^{t-1}\|^2.$

/// CREATING THE NEXT®

DRAO: SMOOTH PROBLEM

• π_i -prox update on the worker

$$\pi_i^t \leftarrow \underset{\pi_i \in \Pi_i}{\operatorname{arg\,max}} \langle A_i \tilde{x}^t, \pi_i \rangle - f_i^*(\pi_i) - \tau_t V_i(\pi_i; \pi_i^{t-1})$$

$$\underline{x}^{t} \leftarrow (\tilde{x}^{t} + \tau_{t} \underline{x}^{t-1})/(1 + \tau_{t}),$$
$$\pi_{i}^{t} \leftarrow \nabla f_{i}(\underline{x}^{t}),$$
$$f_{i}^{*}(\pi_{i}^{t}) \leftarrow \langle \underline{x}^{t}, \pi_{i}^{t} \rangle - f_{i}(\underline{x}^{t}).$$

Communication Complexity

$$L_f \coloneqq \max_{p \in P} L_{f,p}$$
, where $L_{f,p}$ is the smoothness cst for $\sum_i p_i f_i(x)$

	Convex $(\alpha = 0)$	strongly convex $(\alpha > 0)$
Smooth	$\mathcal{O}(\sqrt{L_f}R_0/\sqrt{\epsilon})$	$\mathcal{O}(\sqrt{L_f/lpha}\log(1/\sqrt{\epsilon}))$

DRAO: STRUCTURED NONSMOOTH PROBLEM

• π_i -prox update on the worker

Communication Complexity

 $M_A := \max_{p \in P} \left[\sum_{i=1}^m p_i \, \|A_i\|_{2,2}^2 \right]^{1/2}, \ D_{\Pi} := \max_{p \in P} \left[\max_{\pi, \bar{\pi} \in \Pi} \sum_{i=1}^m p_i \, \|\pi_i - \bar{\pi_i}\|^2 \right]^{1/2}$

	Convex $(\alpha = 0)$	strongly convex $(\alpha > 0)$
Structured Non-smooth	$\mathcal{O}(M_A D_\Pi R_0/\epsilon)$	$\mathcal{O}(M_A D_{\Pi} / \sqrt{\epsilon \alpha})$

$$x^{t} \leftarrow \arg\min_{x \in X} \rho\{\langle x, v_{1}^{t} \rangle - f_{1}^{*}(\pi_{1}^{t}), \dots, \langle x, v_{m}^{t} \rangle - f_{m}^{*}(\pi_{m}^{t})\} + u(x) + \frac{\eta_{t}}{2} \left\| x - x^{t-1} \right\|^{2}$$

- Hard risk measure ρ such that exact evaluation of prox- ρ -update is challenging
 - Mean upper-semi-deviation risk measure of order 2?
 - Kantorovich Ball?
- Access to *P*-prox oracle only:

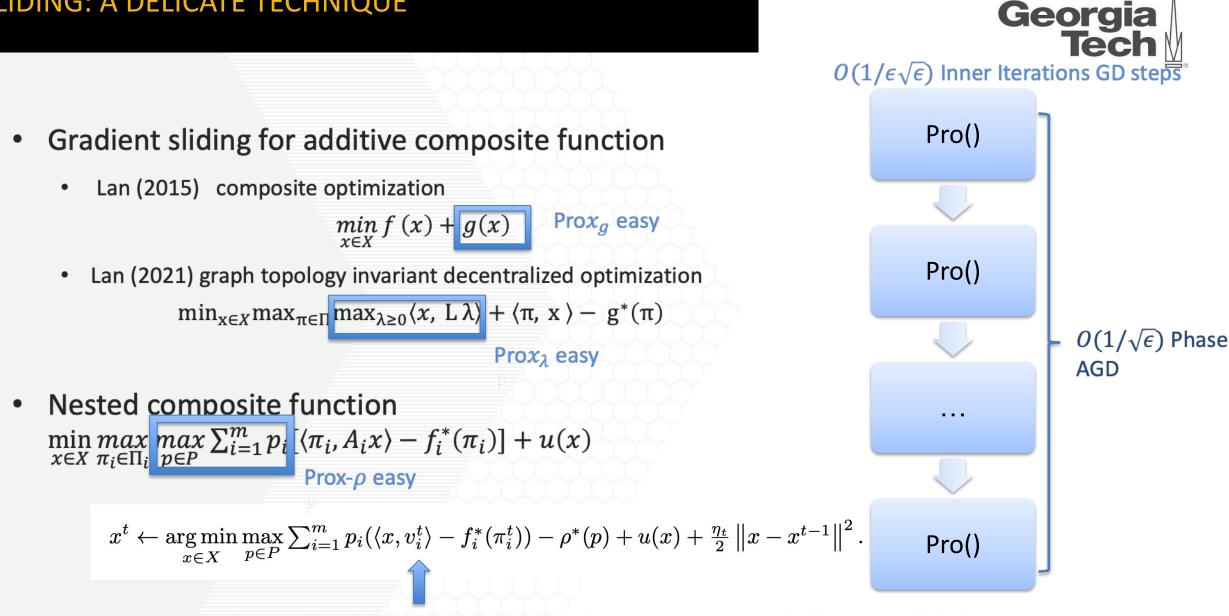
 $\min_{x \in X} \max_{\pi \in \Pi} \rho\{\langle A_1 x, \pi_1 \rangle - f_1^*(\pi_1), \dots, \langle A_m x, \pi_m \rangle - f_m^*(\pi_m)\} + u(x)$

Fenchel Conjugate Again $\min_{x \in X} \max_{p \in P} \max_{\pi \in \Pi} \sum_{i=1}^{m} p_i [\langle \pi_i, Ax \rangle - f_i^*(\pi_i)] - \rho^*(p) + u(x)$

Q: Can we use only $O\left(\frac{1}{\epsilon}\right)$ *P*-projections while maintaining the same communication complexity?

FING THE NEXT[®]

SLIDING: A DELICATE TECHNIQUE



CREATING THE NEXT

CREATING THE NEXT

$$x^{t} \leftarrow \underset{x \in X}{\arg \min} \max_{p \in P} \sum_{i=1}^{m} p_{i}(\langle x, v_{i}^{t} \rangle - f_{i}^{*}(\pi_{i}^{t})) - \rho^{*}(p) + u(x) + \frac{\eta_{t}}{2} \left\| x - x^{t-1} \right\|^{2}.$$

Algorithm 2 Saddle Point Sliding (SPS) Subroutine

Input: Initial points $x^{t-1}, y^0 \in X, p^0, p^{-1} \in P$, and gradients $\{v_i^t\}, \{v_i^{t-1}\}$. Non-negative stepsizes η_t , $\{\delta_s\}$, $\{\gamma_s\}$ and $\{\beta_s\}$, averaging weights $\{q_s\}$, and iteration number S_{t} . 1: for $s = 1, 2, 3...S_t$ do 2: $\tilde{v}^s \leftarrow \begin{cases} \sum_{i=1}^m p_i^0 v_i^t + \delta_1 \sum_{i=1}^m (p_i^0 - p_i^{-1}) v_i^{t-1} & \text{if } s = 1, \\ \sum_{i=1}^m p_i^{s-1} v_i^t + \delta_s \sum_{i=1}^m (p_i^{s-1} - p_i^{s-2}) v_i^t & \text{if } s \ge 2. \end{cases}$ 3: $y^{s} \leftarrow \arg\min_{y \in X} \langle y, \tilde{v}^{s} \rangle + u(y) + \frac{\beta_{s}}{2} ||y - y^{s-1}||^{2} + \frac{\eta_{t}}{2} ||y - x^{t-1}||^{2}$. $p^{s} \leftarrow \arg\max_{p \in P} \sum_{i=1}^{m} p_{i}(\langle v_{i}^{t}, y^{s} \rangle - f_{i}^{*}(\pi_{i}^{t})) - \rho^{*}(p) - \gamma_{s}U(p; p^{s-1}).$ 4: 5: end for 6: return $x^t := \sum_{s=1}^{S_t} q_s y^s / (\sum_{s=1}^{S_t} q_s), y^t := y^{S_t}, \bar{p}^t := \sum_{s=1}^{S_t} q_s p^s / (\sum_{s=1}^{S_t} q_s),$ $p^t := p^{S_t}$ and $\tilde{p}^t = p^{S_t-1}$.

• x^t in DRAO is generated instead by

$$\begin{aligned} (x^{t}, y^{t}, \bar{p}^{t}, p^{t}, \tilde{p}^{t}) &= SPS(x^{t-1}, y^{t-1}, p^{t-1}, \tilde{p}^{t-1}, \{v^{t}_{i}\}, \{v^{t-1}_{i}\} \\ &\mid \eta_{t}, \{\delta^{t}_{s}\}, \{\gamma^{t}_{s}\}, \{\beta^{t}_{s}\}, \{q^{t}_{s}\}, S_{t}) \;. \end{aligned}$$

Smooth Problem

$$M_t \coloneqq \left| |v^t| \right|_{2,U^*} \coloneqq \max_{\left| |p| \right|_U \le 1, \left| |y| \right| \le 1} \sum_{i=1}^m p_i (v_i^t)^\top y$$

- $S_t = [t \ M_t \ \Delta] \Rightarrow O(D_P \widetilde{M} R_0 / \epsilon) P$ -projection oracle complexity
- $\alpha > 0$: $S_t = \lceil (2\Delta/\theta^{t-1})^{1/2} \mathcal{M}_t \rceil \Rightarrow O(\kappa^{1/4} \tilde{M} D_P / (\alpha \sqrt{\epsilon})) P$ -projection oracle complexity

DRAO-S: STRUCTURED NON-SMOOTH

Structured non-smooth problem

$$\tilde{M}_{A\Pi} = \max_{\pi \in \Pi} \{ \left\| [A_1^\top \pi_1^t; \dots; A_m^\top \pi_m^t] \right\|_{2, U^*} := \max_{\pi \in \Pi} \max_{\|y\|_2 \le 1, \|p\|_U \le 1} \sum_{i=1}^m p_i \langle A_i^\top \pi_i, y \rangle \}.$$

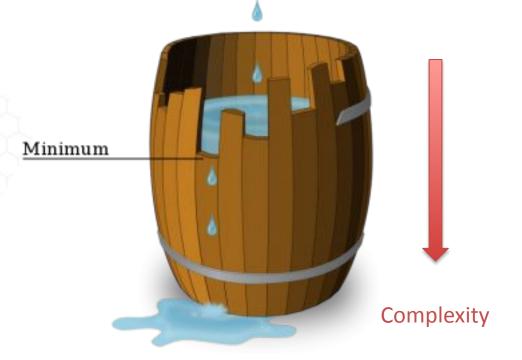
- Non-strongly convex problem
 - $S_t = [M_t \ \Delta] \Rightarrow \mathcal{O}(\tilde{M}_{A\Pi} D_P R_0 / \epsilon)$ *P*-projection oracle complexity

V.S. $\mathcal{O}(M_A D_\Pi R_0/\epsilon)$

- Strongly convex problem
 - $S_t = \lceil \tilde{M}_{A\Pi}^2 \Delta \rceil \Rightarrow \mathcal{O}(\tilde{M}_{A\Pi} D_P / \sqrt{\epsilon \alpha})$ *P*-projection oracle complexity

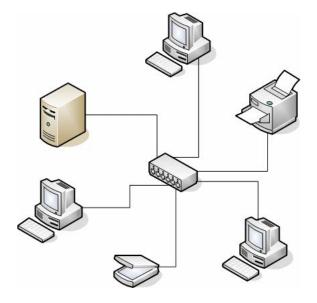
DRAO-S: TAKE-AWAY MESSAGE

- Sliding is also possible for the nested composition
- In optimization, the individual complexity of a component in a problem is not limited by the complexity of the whole system.



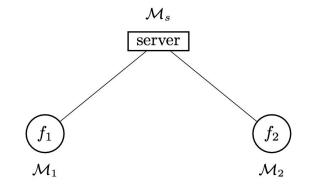
Q: What's the **least** number of communication rounds to find an ϵ -optimal solution ?

- Risk Neutral (Bach 17) $\mathcal{O}(\sqrt{L_{f,\bar{p}}}R_0/\sqrt{\epsilon})$ VS $\mathcal{O}(\sqrt{L_f}R_0/\sqrt{\epsilon})$
 - L_{f, \bar{p}}: Lipschitz smoothness constant of $\sum_{i=1}^{n} \frac{1}{n} f_i(x)$
 - L_f : Largest Lipschitz smoothness constant of among $\{\sum_{i=1}^n p_i f_i(x)\}_{p \in P}$
- Structured Non-smooth? More computation locally?

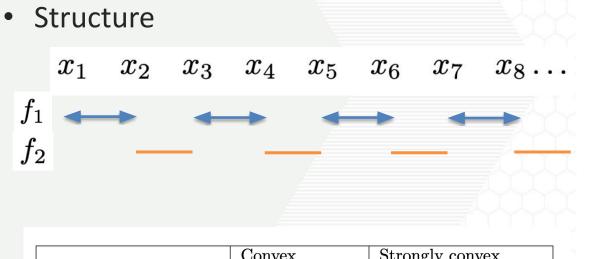


LOWER: COMPUTATION MODEL

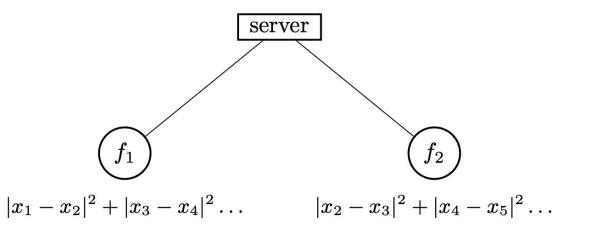
- Local Computation: FO update (for arbitrary number of steps) of local memory, e.g. prox-update
- Local memory: all "reachable" points, linear span of evaluated gradients
- **Communication:** send anything from its memory
- P Computation: p is a linear combination weight. So automatically covered in the linear span framework.



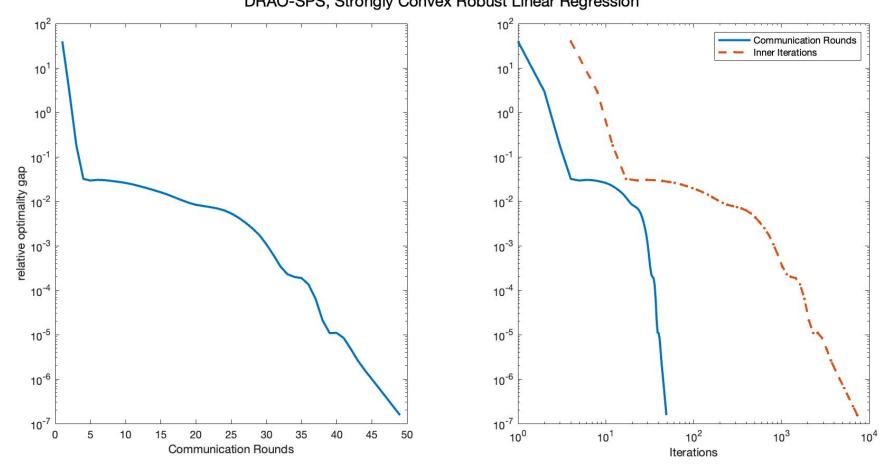
• Optimal is $x_i^* := (1 - \frac{i}{2k+2}) \ \forall i \in [2k+1]$



	Convex	Strongly convex
Smooth	$\mathcal{O}(\sqrt{L_f}R_0/\sqrt{\epsilon})$	$\mathcal{O}(\sqrt{L_f/lpha}\log(1/\sqrt{\epsilon}))$
Structured Nonsmooth	$\mathcal{O}(M_A D_\Pi R_0/\epsilon)$	$\mathcal{O}(M_A D_{\Pi} / \sqrt{\epsilon lpha})$



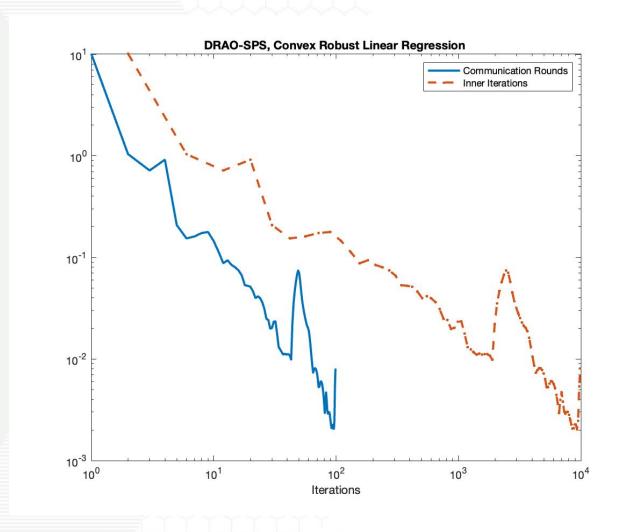
NUMERICAL : SMOOTH+STRONGLY CONVEX



DRAO-SPS, Strongly Convex Robust Linear Regression

CREATING THE NEXT®

NUMERICAL: SMOOTH



CREATING THE NEXT®

NUMERICAL: STRUCTURED NON-SMOOTH V.S. SD METHOD



CREATING THE NEXT®

THANK YOU QUESTIONS?

- Risk Averse Optimization Over a Network.
- DRAO: risk averse as easy as risk neutral
- DRAO-S: can be efficiently implemented
- They are both tight.
- Paper link: Optimal Methods for Risk Averse Distributed
 Optimization
- https://arxiv.org/abs/2203.05117