### Bayesian Approaches to Data-driven Stochastic Optimization

Enlu Zhou

School of Industrial and Systems Engineering Georgia Institute of Technology

Erice Workshop on Robustness and Resilience in Stochastic Optimization and Statistical Learning: Mathematical Foundations May 23, 2022

> Georgialnstituts of Technology

### Data-driven Stochastic Optimization

• Stochastic optimization:

 $\min_{x\in\mathcal{X}}\mathbb{E}_{\xi\sim\mathbb{P}^c}[h(x;\xi)]$ 

• The true distribution  $\mathbb{P}^c$  is rarely known in practice.

 $\begin{array}{cccc} \mathsf{Data} & \to & \mathsf{Model} & \to & \mathsf{Decision} \\ \mathsf{observations} \ \mathsf{of} \ \xi & & \mathsf{distribution} \ \mathsf{of} \ \xi & & x \end{array}$ 



### Data-driven Stochastic Optimization

• Stochastic optimization:

 $\min_{x\in\mathcal{X}}\mathbb{E}_{\xi\sim\mathbb{P}^c}[h(x;\xi)]$ 

- The true distribution  $\mathbb{P}^c$  is rarely known in practice.
  - $\begin{array}{cccc} \mathsf{Data} & \to & \mathsf{Model} & \to & \mathsf{Decision} \\ \mathsf{observations} \ \mathsf{of} \ \xi & & \mathsf{distribution} \ \mathsf{of} \ \xi & & x \end{array}$

• Distributional Uncertainty: distribution of  $\xi$  is estimated from data



### Data-driven Stochastic Optimization

• Stochastic optimization:

 $\min_{x\in\mathcal{X}}\mathbb{E}_{\xi\sim\mathbb{P}^c}[h(x;\xi)]$ 

- The true distribution  $\mathbb{P}^c$  is rarely known in practice.
  - $\begin{array}{cccc} \mathsf{Data} & \to & \mathsf{Model} & \to & \mathsf{Decision} \\ \mathsf{observations} \ \mathsf{of} \ \xi & & \mathsf{distribution} \ \mathsf{of} \ \xi & & x \end{array}$
- Distributional Uncertainty: distribution of  $\xi$  is estimated from data

**Empirical Optimization:** 

$$\min_{x\in\mathcal{X}}\mathbb{E}_{\hat{\mathbb{P}}}[h(x,\xi)]$$

- No consideration of distributional uncertainty
- Solution could be far from the optimal when the data set is small



### Distributionally Robust Optimization (DRO):

 $\min_{x \in \mathcal{X}} \max_{\mathbb{P} \in \mathcal{D}} \mathbb{E}_{\mathbb{P}}[h(x,\xi)]$ 

- Model distributional uncertainty by an ambiguity set
  - Treats every point in the set equally likely
- Optimization w.r.t. the worst case
  - Worst case usually happens with a small probability



- Is there a more convenient and natural way to model distributional uncertainty?
  - Bayesian posterior distribution
  - Encodes the likelihoods from data
  - Bayesian consistency

Is there a less conservative risk attitude?



• Is there a more convenient and natural way to model distributional uncertainty?

### Bayesian posterior distribution

- Encodes the likelihoods from data
- Bayesian consistency
- Is there a less conservative risk attitude?



• Is there a more convenient and natural way to model distributional uncertainty?

### Bayesian posterior distribution

- Encodes the likelihoods from data
- Bayesian consistency
- Is there a less conservative risk attitude? Risk measure: from risk-neutral to risk-averse





• Parameterized distributional uncertainty

 $\min_{x\in\mathcal{X}}\mathbb{E}_{\theta^c}[h(x,\xi)]$ 

The randomness  $\xi \sim \mathbb{P}(\cdot; \theta^c)$ , where  $\theta^c$  is unknown.

• Model the parameter uncertainty by Bayesian posterior distribution

 $\mathbb{P}_n = \mathbb{P}(\theta | \xi_1, \dots, \xi_n), \quad \xi_i \stackrel{\text{iid}}{\sim} \mathbb{P}(\cdot; \theta^c)$ 





## Bayesian Risk Optimization<sup>1</sup>

• Parameterized distributional uncertainty

$$\min_{x\in\mathcal{X}}\mathbb{E}_{\theta^c}[h(x,\xi)]$$

The randomness  $\xi \sim \mathbb{P}(\cdot; \theta^c)$ , where  $\theta^c$  is unknown.

• Model the parameter uncertainty by Bayesian posterior distribution

$$\mathbb{P}_n = \mathbb{P}(\theta | \xi_1, \ldots, \xi_n), \quad \xi_i \stackrel{\text{iid}}{\sim} \mathbb{P}(\cdot; \theta^c)$$

• Bayesian Risk Optimization (BRO):

$$\min_{x \in \mathcal{X}} \rho_{\mathbb{P}_n}(\underbrace{\mathbb{E}_{\theta}[h(x,\xi)]}_{=H(x,\theta)}),$$

where  $\rho$  is a risk functional (e.g., expectation, mean-variance, VaR<sup> $\alpha$ </sup>, CVaR<sup> $\alpha$ </sup>).

<sup>1</sup>D. Wu, H. Zhu, E. Zhou, "A Bayesian Risk Approach to Data-Driven Stock of the Composition of the Composit



## Bayesian Risk Optimization<sup>1</sup>

• Parameterized distributional uncertainty

$$\min_{x\in\mathcal{X}}\mathbb{E}_{\theta^c}[h(x,\xi)]$$

The randomness  $\xi \sim \mathbb{P}(\cdot; \theta^c)$ , where  $\theta^c$  is unknown.

• Model the parameter uncertainty by Bayesian posterior distribution

$$\mathbb{P}_n = \mathbb{P}(\theta | \xi_1, \ldots, \xi_n), \quad \xi_i \stackrel{\text{iid}}{\sim} \mathbb{P}(\cdot; \theta^c)$$

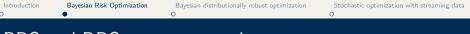
• Bayesian Risk Optimization (BRO):

$$\min_{x\in\mathcal{X}}\rho_{\mathbb{P}_n}(\underbrace{\mathbb{E}_{\theta}[h(x,\xi)]}_{=H(x,\theta)}),$$

where  $\rho$  is a risk functional (e.g., expectation, mean-variance, VaR<sup> $\alpha$ </sup>, CVaR<sup> $\alpha$ </sup>).

<sup>1</sup>D. Wu, H. Zhu, E. Zhou, "A Bayesian Risk Approach to Data-Driven Stochastice of Optimization: Formulations and Asymptotics", SIAM Journal on Optimization, 2018.

<u>Georai</u>:



### BRO and DRO: some connections

BRO: 
$$\min_{x \in \mathcal{X}} \rho_{\mathbb{P}_n}[H(x, \theta)],$$
 DRO:  $\min_{x \in \mathcal{X}} \max_{\theta \in \tilde{\Theta}} H(x, \theta)$ 

ORO interpretation of coherent risk measures:

$$\rho(Z) := \sup_{\zeta \in \mathcal{Z}^*} \left\{ \langle \zeta, Z \rangle - \rho^*(\zeta) \right\}, \quad \forall Z \in \mathcal{Z}.$$

(a) Setting  $\rho$  as the worst-case measure, we can reformulate BRO as a DRO problem:

 $\min_{x\in\mathcal{X}}\max_{\theta\in\Theta}H(x,\theta)$ 





- When data size  $n \to \infty$ , does BRO "recover" the true problem? Yes, by consistency of BRO.
- What kind of robustness can we gain from BRO?
   Asymptotic normality of BRO reveals
   BRO objective = posterior mean objective + weight × CI-width of true performance
   where the weight is controlled by the choice of *a*.





- When data size  $n \to \infty$ , does BRO "recover" the true problem? Yes, by consistency of BRO.
- What kind of robustness can we gain from BRO?
   Asymptotic normality of BRO reveals
   BRO objective = posterior mean objective + weight × Cl-width of true performance

where the weight is controlled by the choice of  $\rho$ .





- When data size  $n \to \infty$ , does BRO "recover" the true problem? Yes, by consistency of BRO.
- What kind of robustness can we gain from BRO?
   Asymptotic normality of BRO reveals
   BRO objective = posterior mean objective + weight × Cl-width of true performance

where the weight is controlled by the choice of  $\rho$ .



## Consistency of BRO

Bayesian consistency (Lorraine Schwartz 1985)

 $\mathbb{P}_n \Rightarrow \delta_{\theta^c}$  as  $n \to \infty$ , under regularity conditions.

### Consistency of objective functions

Suppose the posterior converges and H is continuous in  $\theta$  for every x in  $\mathcal{X}$ . Then for every  $x \in \mathcal{X}$ ,

$$\underbrace{\rho_{\mathbb{P}_n}[H(x,\theta)]}_{\text{BRO objective}} \to \underbrace{H(x,\theta^c)}_{\text{true objective}} \quad \text{a.s. as } n \to \infty.$$

#### Consistency of optimal solutions

Let  $S_n := \arg \min_{x \in \mathcal{X}} \rho_{\mathbb{P}_n}[H(x, \theta)], \quad S := \arg \min_{x \in \mathcal{X}} H(x, \theta^c).$  Under stronger assumptions,

$$\mathbb{D}(S_n,S) := \sup_{x \in S_n} \inf_{y \in S} ||x - y|| \to 0 \quad \text{a.s.} \quad \text{as } n \to \infty,$$

iftufte Dgy



### Asymptotic Normality at a Fixed x

•  $\rho = \text{mean-variance:}$ 

$$\sqrt{n} \left\{ \rho_{\mathbb{P}_n}[H(x,\theta)] - H(x,\theta^c) \right\} \Rightarrow \mathcal{N}(0,\sigma_x^2)$$

•  $\rho = \text{VaR}:$   $\sqrt{n} \{ \rho_{\mathbb{P}_n}[H(x,\theta)] - H(x,\theta^c) \} \Rightarrow \mathcal{N} (\sigma_x \Phi^{-1}(\alpha), \sigma_x^2),$ •  $\rho = \text{CVaR}:$ 

$$\sqrt{n}\left\{\rho_{\mathbb{P}_n}[H(x,\theta)] - H(x,\theta^c)\right\} \Rightarrow \mathcal{N}\left(\frac{\sigma_x}{1-\alpha}\phi(\Phi^{-1}(\alpha)),\sigma_x^2\right),$$

where

$$\sigma_x^2 = \nabla_{\theta} H(x, \theta^c)^{\mathsf{T}} \mathcal{I}_{\theta^c}^{-1} \nabla_{\theta} H(x, \theta^c).$$

- $\nabla_{\theta} H(x, \theta^{c})$ : sensitivity of H w.r.t.  $\theta^{c}$
- $\mathcal{I}_{\theta^c}$ : Fisher information



Georgia Institute

10

### Asymptotic Normality of Optimal Values

### Asymptotics of optimal values

$$\sqrt{n}\left(\min_{x\in\mathcal{X}}\rho_{\mathbb{P}_n}[H(x,\theta)]-\min_{x\in\mathcal{X}}H(x,\theta^c)\right) \Rightarrow \min_{x\in\mathcal{S}}Y_x,$$

where  $S := \arg \min_{x \in \mathcal{X}} H(x, \theta^c)$  and

$$Y_{x} := \begin{cases} \nabla_{\theta} H(x, \theta^{c})^{\mathsf{T}} Z & \text{if } \rho = \text{mean } / \text{ mean-variance} \\ \nabla_{\theta} H(x, \theta^{c})^{\mathsf{T}} Z + \sigma_{x} \Phi^{-1}(\alpha) & \text{if } \rho = \text{VaR} \\ \nabla_{\theta} H(x, \theta^{c})^{\mathsf{T}} Z + \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha} \sigma_{x} & \text{if } \rho = \text{CVaR} \end{cases}$$

where  $Z \sim \mathcal{N}(0, [I(\theta^c)]^{-1})$ .



•  $(1 - \beta)100\%$  confidence interval for  $H(x, \theta^c)$ :

$$\left(\mathsf{VaR}^{\alpha}_{\mathbb{P}_n}[H(x,\theta)] - \Phi^{-1}(\alpha)\frac{\sigma_x}{\sqrt{n}}\right) \pm z_{1-\frac{\beta}{2}}\frac{\sigma_x}{\sqrt{n}}$$

A wider/narrower CI: less/more confidence about actual performance



BRO seeks a trade-off between posterior mean performance and confidence in the actual performance.

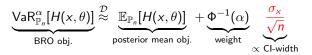


•  $(1 - \beta)100\%$  confidence interval for  $H(x, \theta^c)$ :

۲

$$\left(\mathsf{VaR}^{\alpha}_{\mathbb{P}_n}[H(x,\theta)] - \Phi^{-1}(\alpha)\frac{\sigma_x}{\sqrt{n}}\right) \pm z_{1-\frac{\beta}{2}}\frac{\sigma_x}{\sqrt{n}}$$

A wider/narrower CI: less/more confidence about actual performance



BRO seeks a trade-off between posterior mean performance and confidence in the actual performance.

## Compare with Empirical Optimization

### Asymptotic Normality of Empirical Optimization

Let  $\hat{\theta}_n$  denote the MLE of *n* i.i.d. data from  $f(\cdot; \theta^c)$ . Suppose there is a unique optimal solution  $x^*$  to  $\min_{x \in \mathcal{X}} H(x, \theta^c)$ .

$$\sqrt{n}\left\{\min_{x\in\mathcal{X}}H(x,\hat{\theta})]-H(x^*,\theta^c)\right\}\Rightarrow\nabla_{\theta}H(x^*,\theta^c)^{\mathsf{T}}Z,$$

where  $Z \sim \mathcal{N}(0, [I(\theta^c)]^{-1})$ .

• Empirical-MLE formulation has the same asymptotics as the BRO-mean formulation. Not surprising since Bayesian posterior has the same "frequentist guarantee" as MLE in the limit.

### Newsvendor example: BRO yields more robust solutions

• Newsvendor: assume demand follows an exponential distribution with unknown mean. Draw 1,000 sets of data, each of size 20.

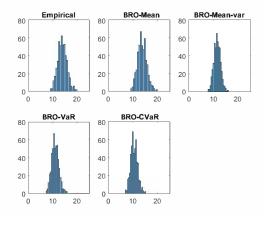


Figure: Empirical and BRO optimal solutions

### Newsvendor example: BRO yields more robust solutions

• Newsvendor: assume demand follows an exponential distribution with unknown mean. Draw 1,000 sets of data, each of size 20.

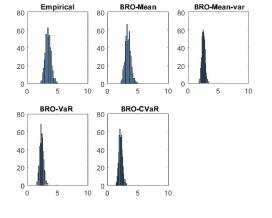


Figure: CI widths for actual performance of Empirical and BRO solutions

Georgia



## BRO: $\min_{x \in \mathcal{X}} \rho_{\mathbb{P}_n} \{ \mathbb{E}_{\theta}[h(x,\xi)] \}$

### • If h is convex and $\rho$ is chosen as CVaR, then the problem is convex.

#### h is non-convex

- BRO has a nested objective function to estimate.
- Gradient of h is available: stochastic gradient descent with (new) nested stochastic gradient estimators<sup>2</sup>
- h only has black-box evaluation: Bayesian optimization for composition function <sup>3</sup>

<sup>2</sup>S. Cakmak, D. Wu, E. Zhou, "Solving Bayesian Risk Optimization via Nested Stochastic Gradient Estimation", *IISE Transactions*, 2021.
 <sup>3</sup>S. Cakmak, R. Astudillo, P. Frazier, E. Zhou, "Bayesian Optimization of Rechnology Measures", *NeurIPS*, 2020.



## BRO: $\min_{x \in \mathcal{X}} \rho_{\mathbb{P}_n} \{ \mathbb{E}_{\theta}[h(x,\xi)] \}$

- If h is convex and  $\rho$  is chosen as CVaR, then the problem is convex.
- h is non-convex
  - BRO has a nested objective function to estimate.
  - Gradient of h is available: stochastic gradient descent with (new) nested stochastic gradient estimators<sup>2</sup>
  - h only has black-box evaluation: Bayesian optimization for composition function <sup>3</sup>

<sup>2</sup>S. Cakmak, D. Wu, E. Zhou, "Solving Bayesian Risk Optimization via Nested Stochastic Gradient Estimation", *IISE Transactions*, 2021.

<sup>3</sup>S. Cakmak, R. Astudillo, P. Frazier, E. Zhou, "Bayesian Optimization of Ris**Rech**inology" Measures", *NeurIPS*, 2020.

### Bayesian Distributionally Robust Optimization

- The assumed parametric family in BRO sometimes introduces additional model uncertainty.
- Solution: allow more distributions outside the assumed parametric family by constructing an ambiguity set.

<sup>4</sup>A. Shapiro, E. Zhou, and Y. Lin, "Bayesian Distributionally Robust Optimization", arXiv2112.08625.



## Bayesian Distributionally Robust Optimization

Bayesian Risk Optimization

- The assumed parametric family in BRO sometimes introduces additional model uncertainty.
- Solution: allow more distributions outside the assumed parametric family by constructing an ambiguity set.
- Bayesian Distributionally Robust Optimization (Bayesian-DRO)<sup>4</sup>

$$\min_{x\in\mathcal{X}}\mathbb{E}_{\mathbb{P}_n}\left[\sup_{Q\in\mathcal{M}^{\theta}}\mathbb{E}_Q[h(x,\xi)]\right],$$

where  $\xi \sim Q$ ,  $\theta \sim \mathbb{P}_n$ , and  $\mathcal{M}^{\theta}$  is an *ambiguity set* around  $f(\cdot; \theta)$  constrained by  $\phi$ -divergence  $\leq \epsilon$ .

<sup>4</sup>A. Shapiro, E. Zhou, and Y. Lin, "Bayesian Distributionally Robust Optimization", arXiv2112.08625. Georgialnetitute

## Bayesian Distributionally Robust Optimization

- The assumed parametric family in BRO sometimes introduces additional model uncertainty.
- Solution: allow more distributions outside the assumed parametric family by constructing an ambiguity set.
- Bayesian Distributionally Robust Optimization (Bayesian-DRO)<sup>4</sup>

$$\min_{x\in\mathcal{X}}\mathbb{E}_{\mathbb{P}_n}\left[\sup_{Q\in\mathcal{M}^{\theta}}\mathbb{E}_Q[h(x,\xi)]\right],$$

where  $\xi \sim Q$ ,  $\theta \sim \mathbb{P}_n$ , and  $\mathcal{M}^{\theta}$  is an *ambiguity set* around  $f(\cdot; \theta)$  constrained by  $\phi$ -divergence  $\leq \epsilon$ .

<sup>4</sup>A. Shapiro, E. Zhou, and Y. Lin, "Bayesian Distributionally Robust Optimization", arXiv2112.08625.

### Robustness of Bayesian-DRO

• For small  $\epsilon > 0$  and KL divergence,

$$\underbrace{\mathbb{E}_{\mathbb{P}_n}\left[\sup_{Q\in\mathcal{M}^{\theta}}\mathbb{E}_Q[h(x,\xi)]\right]}_{\text{Bayesian-DRO objective}}\approx\underbrace{\mathbb{E}_{\mathbb{P}_N}\left[\mathbb{E}_{\theta}[h(x,\xi)]\right]}_{\text{posterior mean}}+\underbrace{\sqrt{2\epsilon}}_{\text{weight}}\underbrace{\mathbb{E}_{\mathbb{P}_N}\left[\sigma_{\theta}[h(x,\xi)]\right]}_{\text{posterior std. dev.}}.$$

• Similar interpretation has also been observed for empirical DRO (see Gotoh et al. (2018), Duchi et al. (2021)).



### Consistency of Bayesian-DRO

• True distribution:  $q_*$ ; Parametric model:  $f_{\theta}$ 

$$\Theta^* := rg\min_{ heta \in \Theta} D_{\mathcal{KL}}(q_* \| f_{ heta})$$

If the model is correct, then  $\Theta^* = \{ \theta \in \Theta : q_* = f_{\theta} \}.$ 

• If  $\Theta^* = \{\theta^*\}$  is the singleton, then for almost every data sequence  $\{\xi_1, \ldots\}, \ \theta_n \xrightarrow{\rho} \theta^*.$ 



### Consistency of Bayesian-DRO

• True distribution:  $q_*$ ; Parametric model:  $f_\theta$ 

$$\Theta^* := rg\min_{ heta \in \Theta} D_{\mathcal{KL}}(q_* \| f_{ heta})$$

If the model is correct, then  $\Theta^* = \{ \theta \in \Theta : q_* = f_{\theta} \}.$ 

- If  $\Theta^* = \{\theta^*\}$  is the singleton, then for almost every data sequence  $\{\xi_1, \ldots\}, \ \theta_n \xrightarrow{p} \theta^*.$
- Almost sure convergence of Bayesian-DRO objective values and optimal solutions as data size  $n \rightarrow \infty$ .



### Consistency of Bayesian-DRO

• True distribution:  $q_*$ ; Parametric model:  $f_\theta$ 

$$\Theta^* := rg\min_{ heta \in \Theta} D_{\mathit{KL}}(q_* \| f_{ heta})$$

If the model is correct, then  $\Theta^* = \{\theta \in \Theta : q_* = f_{\theta}\}.$ 

- If  $\Theta^* = \{\theta^*\}$  is the singleton, then for almost every data sequence  $\{\xi_1, \ldots\}, \ \theta_n \xrightarrow{\rho} \theta^*.$
- Almost sure convergence of Bayesian-DRO objective values and optimal solutions as data size  $n \rightarrow \infty$ .

### Newsvendor Example

Customer demand: true distribution is truncated Normal, chosen parametric family is Exponential (with mean parameter  $\theta$ ).

Table: Non-contaminated data: all data from true distribution

| data size=50       | Bayesian-DRO | BRO-mean | empirical | true  |
|--------------------|--------------|----------|-----------|-------|
| solution           | 18.05        | 10.68    | 18.71     | 19.28 |
| out-of-sample mean | 11.50        | 28.17    | 11.08     | 10.95 |
| out-of-sample std  | 8.37         | 11.79    | 8.25      | 8.33  |

Table: Contaminated data: 80% from true distr., 20% from another distr.

| data size=50       | Bayesian-DRO | BRO-mean | empirical | true  |
|--------------------|--------------|----------|-----------|-------|
| solution           | 19.45        | 9.45     | 17.27     | 19.28 |
| out-of-sample mean | 10.96        | 31.80    | 12.33     | 10.95 |
| out-of-sample std  | 8.39         | 11.91    | 8.34      | 8.33  |

• Bayesian-DRO is robust against distribution model mis-specification.

• Bayesian-DRO is also robust against contaminated data.





Bayesian approaches are natural for streaming data and dynamic settings.

- Online stochastic optimization under streaming data<sup>5</sup>
- Multi-stage stochastic optimization with Bayesian learning<sup>6</sup>
- Bayesian risk Markov decision processes<sup>7</sup>

<sup>&</sup>lt;sup>5</sup>T. Liu, Y. Lin, and E. Zhou, "Bayesian Stochastic Gradient Descent for Stochastic Optimization with Streaming Input Data", arXiv2202.07581.

<sup>&</sup>lt;sup>6</sup>Y. Li, T. Liu, E. Zhou, and F. Zhang, "Bayesian Learning Model Predictive Control for Process-aware Source Seeking", *IEEE Control Systems Letters*, 2021 Organization (2019)

<sup>&</sup>lt;sup>7</sup>Y. Lin, Y. Ren, and E. Zhou, "Bayesian Risk Markov Decision Processes", "Technology" submitted.

## Online Stochastic Optimization with Streaming Data<sup>5</sup>

 $\min_{x \in \mathcal{X}} \mathbb{E}_{\theta^c}[h(x,\xi)] \quad (\theta^c \text{ unknown})$ 

Data of  $\xi$  come in batches sequentially over time.

of **Tech**nology <sup>5</sup>T. Liu, Y. Lin, and E. Zhou, "Bayesian Stochastic Gradient Descent for Stochastic Optimization with Streaming Input Data". arXiv2202.07581. Bayesian Approaches to Data-driven Stochastic Optimization

Georgia

## Online Stochastic Optimization with Streaming Data<sup>5</sup>

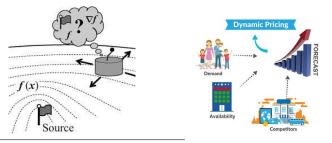
 $\min_{x \in \mathcal{X}} \mathbb{E}_{\theta^c}[h(x,\xi)] \quad (\theta^c \text{ unknown})$ 

Bayesian distributionally robust optimization

Data of  $\xi$  come in batches sequentially over time.

Bayesian Risk Optimization

- Exogenous (decision-independent) uncertainty:  $\xi \sim f(\cdot; \theta^c), \forall x$ .
- Endogenous (decision-dependent) uncertainty: ξ ~ f(·; x, θ<sup>c</sup>).
   Examples: Source seeking (signal depends on location); Dynamic pricing (demand depends on price).



<sup>5</sup>T. Liu, Y. Lin, and E. Zhou, "Bayesian Stochastic Gradient Descent for Stochastic Optimization with Streaming Input Data". arXiv2202.07581. Bayesian Approaches to Data-driven Stochastic Optimization

GeorgiaInstitute

## Online Stochastic Optimization with Streaming Data<sup>5</sup>

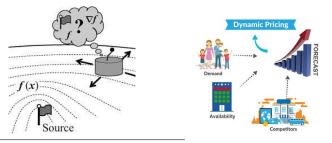
 $\min_{x \in \mathcal{X}} \mathbb{E}_{\theta^c}[h(x,\xi)] \quad (\theta^c \text{ unknown})$ 

Bayesian distributionally robust optimization

Data of  $\xi$  come in batches sequentially over time.

Bayesian Risk Optimization

- Exogenous (decision-independent) uncertainty:  $\xi \sim f(\cdot; \theta^c), \forall x$ .
- Endogenous (decision-dependent) uncertainty: ξ ~ f(·; x, θ<sup>c</sup>).
   Examples: Source seeking (signal depends on location); Dynamic pricing (demand depends on price).



<sup>5</sup>T. Liu, Y. Lin, and E. Zhou, "Bayesian Stochastic Gradient Descent for Stochastic Optimization with Streaming Input Data". arXiv2202.07581. Bayesian Approaches to Data-driven Stochastic Optimization

GeorgiaInstitute



### Algorithm: decision-dependent case

At time t, given a new batch of data  $\xi_t \sim f(\cdot; x_t, \theta^c)$ , do the following.

1. Bayesian updating of the posterior:

$$\pi_t(\theta) \propto \pi_{t-1}(\theta) f(\xi_t | x_t, \theta).$$

2. Use one or more iterates of SGD to solve

$$\min_{x \in \mathcal{X}} H(x, \pi_t) = \underbrace{\mathbb{E}_{\theta \sim \pi_t} \mathbb{E}_{\xi \sim f(\cdot; x_t, \theta)}[h(x, \xi)]}_{\text{BRO-mean}}$$

Under mild conditions  $x_{t+1} = \Pi_{\mathcal{X}} \{ x_t - \alpha_t [ \nabla_x h(x_t, \xi) + h(x_t, \xi) \nabla_x \ln f(\xi; x_t, \theta) ] \}$ 

unbiased gradient estimator

Convergence: even with non-i.i.d. data  $\{\xi_t\}_t$ , the posterior  $\{\pi_t\}_t$  is strongly consistent and  $\{x_t\}_t$  converges weakly.

**Tech**nologiw



### Algorithm: decision-dependent case

At time t, given a new batch of data  $\xi_t \sim f(\cdot; x_t, \theta^c)$ , do the following.

1. Bayesian updating of the posterior:

U

$$\pi_t(\theta) \propto \pi_{t-1}(\theta) f(\xi_t | x_t, \theta).$$

2. Use one or more iterates of SGD to solve

$$\min_{\mathbf{x}\in\mathcal{X}} H(\mathbf{x}, \pi_t) = \underbrace{\mathbb{E}_{\theta \sim \pi_t} \mathbb{E}_{\xi \sim f(\cdot; \mathbf{x}_t, \theta)}[h(\mathbf{x}, \xi)]}_{\text{BRO-mean}}$$

Inder mild conditions  

$$x_{t+1} = \prod_{\mathcal{X}} \{ x_t - \alpha_t [\underbrace{\nabla_x h(x_t, \xi) + h(x_t, \xi) \nabla_x \ln f(\xi; x_t, \theta)}_{\text{unbiased gradient estimator}} ] \}$$

Convergence: even with non-i.i.d. data  $\{\xi_t\}_t$ , the posterior  $\{\pi_t\}_t$  is strongly consistent and  $\{x_t\}_t$  converges weakly.

**Tech**nologiw

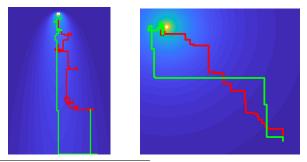


## Application: source seeking<sup>6</sup>

Adapt the previous algorithm to robot source seeking

- solve a model predictive control problem instead of the original
- replace SGD by a neighborhood search

Figure: Trajectories of our proposed algorithm (red) and the expected rate algorithm (green) in different scenarios (with and without wind)



<sup>6</sup>Y. Li, T. Liu, E. Zhou, and F. Zhang, "Bayesian Learning Model Predictive Technology Control for Process-aware Source Seeking", *IEEE Control Systems Letters*, 2021.

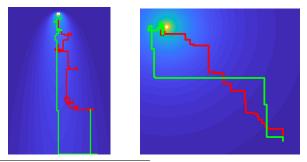


## Application: source seeking<sup>6</sup>

Adapt the previous algorithm to robot source seeking

- solve a model predictive control problem instead of the original
- replace SGD by a neighborhood search

Figure: Trajectories of our proposed algorithm (red) and the expected rate algorithm (green) in different scenarios (with and without wind)



<sup>6</sup>Y. Li, T. Liu, E. Zhou, and F. Zhang, "Bayesian Learning Model Predictive Technology Control for Process-aware Source Seeking", *IEEE Control Systems Letters*, 2021.

### Application: source seeking

Table: Comparison between our algorithm with expected rate algorithm. Results are averaged over 20 stochastic simulations.

| Scenario | Algorithm        | Trajectory<br>Length | Measurements | Total<br>Search<br>Time |
|----------|------------------|----------------------|--------------|-------------------------|
| Without  | Our Alg.         | 254.7                | 76.4         | 636.7                   |
| Wind     | Expected<br>Rate | 261.5                | 261.5        | 1569                    |
| With     | Our Alg.         | 275.7                | 65.1         | 601.2                   |
| Wind     | Expected<br>Rate | 252.7                | 252.7        | 1516.2                  |





- Bayesian posterior distributions (instead of ambiguity sets) provide a natural and convenient way to model distributional uncertainty.
- Two new formulations: Bayesian Risk Optimization (BRO), Bayesian distributionally robust optimization (Bayesian-DRO). Both have consistency and robustness.
- Bayesian approaches are amenable to streaming data and dynamic settings.



| Introduction | Bayesian Risk Optimization | Bayesian distributionally robust optimization | Stochastic optimization with streaming data |
|--------------|----------------------------|-----------------------------------------------|---------------------------------------------|
| 0            | 0                          | 0                                             | •                                           |
|              |                            |                                               |                                             |

**Collaborators:** 

Alexander Shapiro (ISyE, Georgia Tech), Fumin Zhang (ECE, Georgia Tech), Peter Frazier (ORIE, Cornell)

Di Wu, Helin Zhu, Sait Cakmak, Tianyi Liu, Yifan Lin, Rahul Austillo, Yingke Li





### References

- D. Wu, H. Zhu, E. Zhou, "A Bayesian Risk Approach to Data-Driven Stochastic Optimization: Formulations and Asymptotics", *SIAM Journal on Optimization*, 2018. (INFORMS Outstanding Simulation Publication Award, 2020)
- 2 S. Cakmak, D. Wu, E. Zhou, "Solving Bayesian Risk Optimization via Nested Stochastic Gradient Estimation", *IISE Transactions*, 2021.
- 3 S. Cakmak, R. Astudillo, P. Frazier, E. Zhou, "Bayesian Optimization of Risk Measures", *NeurIPS*, 2020.
- 4 A. Shapiro, E. Zhou, and Y. Lin, "Bayesian Distributionally Robust Optimization", arXiv2112.08625.
- 5 T. Liu, Y. Lin, and E. Zhou, "Bayesian Stochastic Gradient Descent for Stochastic Optimization with Streaming Input Data", arXiv2202.07581.
- 6 Y. Li, T. Liu, E. Zhou, and F. Zhang, "Bayesian Learning Model Predictive Control for Process-aware Source Seeking", *IEEE Control Systems Letters*, 2021.
- 7 Y. Lin, Y. Ren, and E. Zhou, "Bayesian Risk Markov Decision Processing Institute submitted.

| Introduction | Bayesian Risk Optimization | Bayesian distributionally robust optimization | Stochastic optimization with streaming data |
|--------------|----------------------------|-----------------------------------------------|---------------------------------------------|
| 0            | 0                          | 0                                             | •                                           |

# Thank you!

