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Formal ingredients for an operational definition of resilience

[Holling, 1973] C. S. Holling.
Resilience and stability of ecological systems.
Annual Review of Ecology and Systematics, 4:1–23, 1973.
→ not a single equation!

Resilience is the capacity of a system to continually change and adapt
yet remain within critical thresholds (Stockholm Resilience Centre)

I “continually change”, “remain”
→ time variable (continuous, discrete)

I “system”, “change”
→ states, dynamics, dynamical system

I “adapt”
→ actions, controls, decisions, strategies, policies, decision rules

I “remain within critical thresholds”
→ constraint set, admissibility, viable set, viability





To make a long story short . . .
Mathematical control theory, viability and stochastic optimization
offer material for an operational definition of resilience

Theory. Mathematics provides concepts, tools and methods

I states, controls, uncertainties, dynamics
(control theory)

I scenarios, policies, critical thresholds
I (stochastic, robust) viability kernel = viable states
I minimal time of crisis, cost-efficiency (optimization)

Answers. Geometry + Optimization

I Resilient states = viable states
I Measuring resilience as the inverse of the minimal cost

(expected, robust) to reach a viability kernel

Tribute to
Jean-Pierre Aubin, Patrick Saint-Pierre, Luc Doyen, Sophie Martin

Our emphasis on the treatment of uncertainties:
stochastic and robust viability, and possible extensions
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We distinguish two polar classes of models:
knowledge models versus decision models

Knowledge models:
1/1 000 000→ 1/1 000→ 1/1
maps

Office of Oceanic and
Atmospheric Research (OAR)
climate model

Action/decision models:
economic models are fables
designed to provide insight

William Nordhaus
economic-climate model
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This talk is not about crafting dynamical models

I Elaborating a dynamical model is a delicate venture
I Peter Yodzis, Predator-Prey Theory and Management of

Multispecies Fisheries, Ecological Applications 4:51–58, 1994
In population modelling the functional forms of models are at least as
important as are parameter values in expressing the underlying biology
and in determining the outcome. (. . . ) For instance, May et al.
(1979) assumed, without comment, a particular form of predator-prey
interaction; and this particular form was carried over, again without
comment, by Flaaten. It turns out that this ”invisible” but powerful
assumption is responsible in large part for the conclusion reached by
Flaaten (1988). (. . . ) Flaaten’s work is controversial because of his
conclusion that ”sea mammals should be heavily depleted to increase
the surplus production of fish resources for man” (Flaaten 1988:114).

I Our starting point will be a mathematical dynamical model
that captures how sequences of decisions affect a “piece of reality”

I Then, we will use such a model to frame a decision problem



Climate change mitigation



Let us scout a very stylized model
of the climate-economy system [De Lara and Doyen, 2008]

We lay out a dynamical model with

I two state variables

environmental: atmospheric co2

concentration level
M(t)

economic: gross world product
gwp Q(t)

I one decision variable,
the emission abatement rate a(t)



A carbon cycle model “à la Nordhaus”
is an example of decision model

I Time index t in years

I Economic production Q(t) (gwp)

Q(t + 1) =

economic growth︷ ︸︸ ︷
(1 + g) Q(t)

I co2 concentration M(t)

M(t + 1) = M(t)−δ(M(t)−M−∞)︸ ︷︷ ︸
natural sinks

+α

emissions︷ ︸︸ ︷
Emiss

(
Q(t)

) (
1− a(t)

)︸ ︷︷ ︸
abatement

I Decision a(t) ∈ [0, 1] is the abatement rate of co2 emissions



Data

I M(t) co2 atmospheric concentration, measured in ppm, parts per
million
(379 ppm in 2005)

I M−∞ pre-industrial atmospheric concentration
(about 280 ppm)

I Emiss(Q(t)) “business as usual” co2 emissions
(about 7.2 GtC per year between 2000 and 2005)

I 0 ≤ a(t) ≤ 1 abatement rate reduction of co2 emissions

I α conversion factor from emissions to concentration
(α ≈ 0.471 ppm.GtC−1 sums up highly complex physical
mechanisms)

I δ natural rate of removal of atmospheric co2 to unspecified sinks
(δ ≈ 0.01 year−1)



A concentration target is pursued to avoid danger

United Nations Framework
Convention on Climate Change
“to achieve, (. . . ), stabilization of
greenhouse gas concentrations in the
atmosphere at a level that would
prevent dangerous anthropogenic
interference with the climate
system”

Limitation of concentrations of co2

I below a tolerable threshold M]

(say 350 ppm, 450 ppm)

I at a specified date T > 0
(say year 2050 or 2100)

M(T )︸ ︷︷ ︸
concentration at horizon

≤ M]︸︷︷︸
threshold



Constraints capture different requirements
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I The concentration has
to remain below a
tolerable level at the
horizon T :

M(T ) ≤ M]

I More demanding:
from the initial time t0

up to the horizon T

M(t) ≤ M]

t = t0, . . . ,T



Constraints may be environmental, physical, economic

I The concentration has to remain below a tolerable level
from initial time t0 up to the horizon T

M(t) ≤ M] , t = t0, . . . ,T

I Abatements are expressed as fractions

0 ≤ a(t) ≤ 1 , t = t0, . . . ,T − 1

I As with “cap and trade”, setting a ceiling on co2 price
amounts to cap abatement costs

C
(
a(t),Q(t)

)︸ ︷︷ ︸
costs

≤ c] (100 euros / tonne co2) , t = t0, . . . ,T − 1



Mixing dynamics, optimization and constraints
yields a cost-effectiveness problem

I Minimize abatement costs

min
a(t0),...,a(T−1)

T−1∑
t=t0

(
1

1 + re
)t−t0 C

(
a(t),Q(t)

)︸ ︷︷ ︸
abatement costs

I under the gwp-co2 dynamics{
M(t + 1) = M(t)− δ(M(t)−M−∞) + αEmiss

(
Q(t)

)
(1− a(t))

Q(t + 1) = (1 + g)Q(t)

I and under target constraint

M(T ) ≤ M]︸ ︷︷ ︸
CO2 concentration



1980 2000 2020 2040 2060 2080 2100

100

200

300

400

500

600

700

800

900

1000

1100

1200

Concentration CO2

t

M
(t

) 
(p

p
m

)

viable

BAU

green

threshold



Outline of the presentation

The viability approach
A few words on the purpose of modelling
(Deterministic) viability in a nutshell

Handling uncertainty in control theory
Discrete time nonlinear state-control system
(+,×) and (max,+) algebras
Scenarios/uncertainty chronicles

The stochastic/robust viability approaches
Viable scenarios
Stochastic viability in a nutshell
Robust viability in a nutshell

Measures of resilience and extensions
How to measure resilience?
From viable states to viable random paths

“Self-promotion, nobody will do it for you” ;-)



What is resilience?

Resilience is the capacity of a system
to continually change and adapt
yet remain within critical thresholds

Stockholm Resilience Centre



We showcase control theory in discrete time as a
proper vehicle for problem formulation
[De Lara and Doyen, 2008]

Control theory

in discrete time

blanco

Ecology Economics Modeling

Life-cycle Decision Simulations

Patches under

uncertainty

1



Discrete time nonlinear state-control system

xt+1 = ft
(
xt , ut

)
, t ∈ T = {t0, t0 + 1, . . . ,T − 1}

I the time t (stage) ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N is discrete
with initial time t0 and horizon T (T < +∞ or T = +∞)
(the time period [t, t + 1[ may be a year, a month, etc.)

I the state variable xt belongs to the state space X = RnX

(stocks, biomasses, abundances, capital)

I the control variable ut is an element of the control space U = RnU

(inflows, outflows, catches, harvesting effort, investment)

I the dynamics ft maps X× U into X
(storage, age-class model, population dynamics, economic model)



Viability is relevant to address
the compatibility puzzle



We mathematically express the objectives pursued
as control and state constraints

I For a state-control system,
we cloth objectives as constraints

I and we distinguish

control constraints (rather easy)
state constraints (rather difficult)

I Viability theory deals with
state constraints



Constraints may be explicit on the control variable
and are rather easily handled by reducing the decision set

Examples of control constraints

I Irreversibility constraints, physical bounds
�

0 ≤ at ≤ 1 , 0 ≤ ht ≤ Bt

I Tolerable costs c
(
at ,Qt

)
≤ c]

Control constraints / admissible decisions

ut︸︷︷︸
control

∈ Bt

(
xt
)︸ ︷︷ ︸

admissible set

, t = t0, . . . ,T − 1

Easy because control variables ut are precisely those variables
whose values the decision-maker can fix at any time within given bounds



Meeting constraints bearing on the state variable is delicate
due to the dynamics pipeline between controls and state

State constraints / admissible states

xt︸︷︷︸
state

∈ At︸︷︷︸
admissible set

, t = t0, . . . ,T

Examples (“tipping points”)

I co2 concentration Mt ≤ M]

I biomass B[ ≤ Bt ≤ B]

State constraints are mathematically difficult because of “inertia”

xt = function︸ ︷︷ ︸
iterated dynamics

(
ut−1, . . . , ut0︸ ︷︷ ︸
past controls

, xt0
)



Target and asymptotic state constraints are special cases

I Final state achieves some target

xT︸︷︷︸
final state

∈ AT︸︷︷︸
target set

Example: co2 concentration

I State converges toward a target

lim
t→+∞

xt︸ ︷︷ ︸
asymptotic state

∈ A∞︸︷︷︸
target set

Example: in mathematical epidemiology,
convergence towards an endemic state
(hence the ubiquitous R0)



Can we solve the compatibility puzzle between dynamics
and objectives by means of suitable controls?

I Given a dynamics that
mathematically embodies the
causal impact of controls
on the state

I Imposing objectives bearing on
output variables
(states, controls)

I Is it possible to
find a control path
that achieves the objectives
for all times?



Crisis occurs when constraints are trespassed at least once

I An initial state is not viable if,
whatever the sequence of
controls, a crisis occurs

I There exists a time when
one of the state or control
constraints is violated



The compatibility puzzle can be solved when
the initial viability kernel Viabt0

is not empty
[Aubin, 1991]

Viable initial states form the viability kernel

Viabt =



initial
states
x ∈ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

there exist a control path u(·) =(
ut , ut+1, . . . , uT−1

)
and a state path x(·) =(
xt , xt+1, . . . , xT

)
starting from xt = x at time t
satisfying for any time s ∈ {t, . . . ,T − 1}
xs+1 = fs(xs , us) dynamics
us ∈ Bs(xs) control constraints
xs ∈ As state constraints
xT ∈ AT target constraints


J.-P. Aubin. Viability Theory. Birkhäuser, Boston, 1991.



The viability kernel is included in the state constraint set

I The largest set is the
state constraint set A

I It includes the smaller blue
viability kernel Viabt0

I The green set measures
the incompatibility between
dynamics and constraints:
good start, but inevitable crisis!



The viability program aims at turning
a priori constraints, with state constraints,
into a posteriori constraints, without state constraints

I A priori constraints, with state constraints
xt0 ∈ X
xt+1 = ft(xt , ut)
ut ∈ Bt(xt) control constraints
xt ∈ At state constraints

I are turned into a posteriori constraints, without state constraints
except for the initial state

xt0 ∈ Viabt0 initial state constraint
xt+1 = ft

(
xt , ut

)
ut ∈ Bviab

t

(
xt
)

control constraints



Viable epidemics control



“Canal Endémico” stands as the reference
to control dengue

Figure: Cases of dengue between 2009 and
2014. Source: Secretaŕıa Municipal de Salud de
Cali.

Program ”Dengue Control” of SMS

Control mosquito breeding sites



Capping the human infected population with the
Ross-Macdonald model
[De Lara and Sepulveda, 2016]

I The dynamics of the system is given by

infected mosquito proportion
dm

dt
= Amh(t)(1−m(t))− u(t)m(t)

infected human proportion
dh

dt
= Ahm(t)(1− h(t))− γh(t)

I Determine, if it exists, a piecewise continuous function
(fumigation policy rates) u(·) ,

u(·) : t 7→ u(t) , u ≤ u(t) ≤ u , ∀t ≥ 0

such that the following so-called viability constraint is satisfied

h(t) ≤ H , ∀t ≥ 0



Capping the human infected population with the
Ross-Macdonald model: viability kernels
[De Lara and Sepulveda, 2016]

m

h h

m



To deal with uncertainties, we sample the
controlled Ross–Macdonald model
[Sepulveda Salcedo and De Lara, 2019]

(
Mt+1,Ht+1

)
= f
(
Mt ,Ht , ut , AM

t ,A
H
t︸ ︷︷ ︸

uncertainties

)
I Basic variables and parameters are

I time t= t0, t0 + 1 . . . ,T − 1,T , measured in days
I Mt , the proportion of infected mosquitos (Aedes Aegypti adultos)

at the beginning of the day [t, t + 1[
I Ht , the proportion of infected humans

at the beginning of the day [t, t + 1[
I ut , the mosquito mortality rate (application of chemical control)

applied during all day [t, t + 1[

I The objective is to maintain infected humans at a low level

Ht ≤ H , ∀t = t0, . . . ,T

with limited resources u ≤ ut ≤ u , ∀t = t0, . . . ,T − 1
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Discrete time nonlinear state-control system

xt+1 = ft
(
xt , ut ,wt+1

)
, t ∈ T = {t0, t0 + 1, . . . ,T − 1}

I the time t (stage) ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N is discrete
with initial time t0 and horizon T (T < +∞ or T = +∞)
(the time period [t, t + 1[ may be a year, a month, etc.)

I the state variable xt belongs to the state space X = RnX

(stocks, biomasses, abundances, capital)

I the control variable ut is an element of the control space U = RnU

(inflows, outflows, catches, harvesting effort, investment)

I the uncertainty wt ∈W = RnW

(recruitment or mortality uncertainties, climate fluctuations)

I the dynamics ft maps X× U×W into X
(storage, age-class model, population dynamics, economic model)



By contrast with control variables,
uncertainty variables are exogenous input variables



“Policies” are closed-loop controls

I Deterministic control theory appeals to
open-loop control, �
that is, a time-dependent sequence
(planning, scheduling)

u : t ∈ T︸ ︷︷ ︸
time

7→ ut ∈ U︸ ︷︷ ︸
control

I Another notion of solution is
a decision rule, �×E a policy,
that is, a mapping

λ : (t, x) ∈ T× X︸ ︷︷ ︸
(time, state)

7→ u = λt(x) ∈ U︸ ︷︷ ︸
control

which “closes the loop” between
time t–state x and control u
(and is especially relevant in presence of
uncertainties)
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The (+,×) algebra of probability theory



Probability space

I The set Ω is equipped with a σ-field F ((Ω,F) measurable space),
and the elements of F ⊂ 2Ω are called events

I One speaks of a probability space (Ω,F ,P)
when the measurable space (Ω,F) is equipped with a probability P
(supposed, when needed and for the sake of simplicity, to have a
density p w.r.t. a reference measure, thus covering the finite case)

I The probability P : F → [0, 1] has the properties
I normalization

P(∅) = 0 , P(Ω) = 1

I additivity

P(
⋃
n∈N

An) =
∑
n∈N

P(An)

for any countable set N , An ∈ F for all n ∈ N ,
such that m 6= n =⇒ Am ∩ Am = ∅



Expected value
I A random variable is a measurable mapping X : (Ω,F)→ (X,X )

(between measurable spaces)

I The expected value of a nonnegative random variable
X : Ω→ R+ ∪ {+∞} is

E[X] =

∫
Ω

X(ω)dP(ω)
(∫

Ω

X(ω)p(ω)dω
) (∑

ω∈Ω

P{ω}X(ω)
)

I The notation E (or EP or EP) refers to the mathematical
expectation (operator) over Ω under probability P,
extended to integrable real-valued random variables

I The expectation operator E enjoys linearity in the (+,×) algebra

E[X + Y] = E[X] + E[Y]

I The random variables X,Y are independent under P when
their joint distribution P(X,Y) can be decomposed as a product

P(X,Y) = PX ⊗ PY



The (max,+) algebra of decision/robust/plausibility theory



Decision space, cost measure, plausibility
are the robust counterparts of probability space

I The set Ω is equipped with a σ-field F ((Ω,F) measurable space)

I One speaks of a decision space (Ω,F ,K) when the measurable
space (Ω,F) is equipped with a cost measure K (supposed, when
needed, to have a density κ, thus covering the finite case)

I The cost measure (plausibility) K : F → [−∞, 0] has the properties
I normalization

K(∅) = −∞ , K(Ω) = 0

I (max,+) “additivity”

K(
⋃
n∈N

An) = sup
n∈N

K(An)

for any countable set N , An ∈ F for all n ∈ N ,
such that m 6= n =⇒ Am ∩ Am = ∅



Cost density, plausibility function

I The function κ : Ω→ [−∞, 0] is a cost density
of the cost measure K if

K(A) = sup
ω∈A

κ(ω) , ∀A ∈ F

I A function κ : Ω→ [−∞, 0],
such that supω∈Ω κ(ω) = 0,
is a cost density, also called plausibility function



The fear operator [Bernhard, 1995]

The Moreau lower addition extends the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞

I A decision variable is a mapping (Ω,F)→ (T, T )
(with codomain a topological space)

I The feared value of a function ψ : Ω→ [−∞,+∞]
(real-valued decision variable) is defined by

F(ψ) = sup
ω∈Ω

[
ψ(ω) ·+ κ(ω)

]
I The fear operator F enjoys linearity in the (max,+) algebra

F
(
max{ψ, φ}

)
= max{F(ψ),F(φ)}

I Independence
K(ψ,φ) = Kψ + Kφ



Two applications of the parallelism
between (+,×) and (max,+) algebras



Magic formulas in optimization

Nested optimization / Tower formula

inf
(a,b)∈A×B

h(a, b) = inf
a∈A

(
inf
b∈B

h(a, b)
)

E[h(A,B)] = E
[
E[h(A,B) | A]

]
Decomposition, parallel optimization / Independence

inf
(a,b)∈A×B

(
f (a) + g(b)

)
= inf

a∈A
f (a) + inf

b∈B
g(b)

A,B independent =⇒ E[f (A)× g(B)] = E[f (A)]× E[g(B)]



More or less implausible events

I For any subset Ω′′ ⊂ Ω, we have that

K(∅) = −∞ ≤ K(Ω′′) ≤ K(Ω) = 0

I The higher (closest to zero from below), the more plausible, whereas
totally implausible outcomes in Ω′′ are such that K(Ω′′) = −∞

I With any subset Ω ⊂ Ω, we associate the characteristic function

δΩ

(
ω
)

=

{
0 if ω ∈ Ω

+∞ if ω 6∈ Ω

I The cost measure K associated with the uniform density −δΩ

satisfies, for any subset Ω′ ⊂ Ω,

K(Ω \ Ω′) = sup
ω∈Ω\Ω′

(
−δΩ(ω)

)
=

{
−∞ if Ω ⊂ Ω′

0 if (Ω \ Ω′) ∩ Ω 6= ∅
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We call scenario a temporal sequence of uncertainties

Scenarios are special cases of “states of Nature”
A scenario (pathway, chronicle) is a sequence of uncertainties

w(·) =
(
wt0 , . . . ,wT−1

)
∈ S = WT−t0

HH

HM

HL

MH

MM

ML

LH

LM

LL

El tiempo se bifurca perpetuamente hacia innumerables futuros
(Jorge Luis Borges, El jard́ın de senderos que se bifurcan)



Beware! Scenario holds a different meaning
in other scientific communities

I In practice, what modelers call
a “scenario” is a mixture of
I a sequence of uncertain

variables (also called a
pathway, a chronicle)

I a policy
I and even a static or

dynamical model

I In what follows

scenario = pathway = chronicle



Choosing a set of scenarios is excluding
“things we don’t know we don’t know”

Reports that say that something hasn’t happened are always in-
teresting to me, because as we know, there are known knowns;
there are things we know we know. We also know there are
known unknowns; that is to say we know there are some things
we do not know. But there are also unknown unknowns – the
ones we don’t know we don’t know. And if one looks throughout
the history of our country and other free countries, it is the latter
category that tend to be the difficult ones.

Donald Rumsfeld, former United States Secretary of Defense.
From Department of Defense news briefing, February 12, 2002



Scenarios
stochastic vs robust



In the stochastic approach, the set of scenarios
is equipped with a known probability



A priori information on the scenarios may be probabilistic

I A probability distribution P on S
I In practice, one often assumes that the components

(
wt0 , . . . ,wT−1

)
form
I an independent and identically distributed sequence
I a Markov chain, a time series, etc.

Water inflows in a dam
Water inflows in a dam may be modelled as time series (ARMA, etc.)



Equipping the set S of scenarios with a probability P
is a delicate issue!

I The probabilistic distribution of the climate sensitivity parameter in
climate models differs according to authors

I In the multi-prior approach, the a priori information
consists of different probabilities (beliefs, priors),
belonging to a set P of admissible probabilities on S



In the set-membership approach,
only a subset of the set of scenarios is known



A priori information on the scenarios
may be set membership
The general case

I Selected scenarios may belong to any subset S

w(·) ∈ S ⊂ S

Historical water inflows
scenarios in a dam
We can represent offline information
by the observed historical water
inflows scenarios



Specific subsets correspond to time independence

HH

HM

HL

MH

MM

ML

LH

LM

LL

NO time independence because
the range of values of wt+1 depends
on the value of wt :
wt = H ⇒ wt+1 ∈ {H,M, L}
wt = M ⇒ wt+1 ∈ {M}

HH

HM

HL

MH

MM

ML

LH

LM

LL

Time independence because
S = {H,M} × {M, L} ⊂ S
is a product set



A priori information on the scenarios may be softer
than set membership thanks to plausibility functions

Plausibility function κ : S→ R− ∪ {−∞}
such that (normalization)

sup
w(·)∈S

κ
(
w(·)

)
= 0

can “soften” the above set membership approach

I the higher κ
(
w(·)

)
, the more plausible the scenario w(·)

I totally implausible scenarios are those for which κ
(
w(·)

)
= −∞

Historical water inflows scenarios in a dam
Attribute the value κ

(
w(·)

)
= −∞ for all the scenarios w(·) which

do not belong to the observed historical water inflows scenarios



Summary

I A priori information is carried by the scenarios set, and may be
I probabilistic (probability and expectation operator)
I set membership (plausibility and fear operator)

I This will be useful to mathematically express
objectives and constraints
in a decision problem under uncertainty
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A scenario is said to be viable for a given policy if
the state and control trajectories satisfy the constraints

Viable scenario under given policy
A scenario w(·) ∈ S is said to be viable under policy λ : T× X→ U
if the trajectories x(·) and u(·) generated by the dynamics

xt+1 = ft
(
xt , ut ,wt+1

)
, t = t0, . . . ,T − 1

with the policy
ut = λt

(
xt
)

satisfy the state and control constraints

ut ∈ Bt

(
xt
)︸ ︷︷ ︸

control constraints

and xt ∈ At︸ ︷︷ ︸
state constraints

, ∀t = t0, . . . ,T

The set of viable scenarios is denoted by Sλt0,x0



We look after policies that make
the corresponding set of viable scenarios “large”

Set of viable scenarios

Sλt0,x0
= {w(·) ∈ S | the state constraints

xt ∈ At

and the control constraints

ut = λt
(
xt
)
∈ Bt

(
xt
)

are satisfied for all times t = t0, . . . ,T}

I The larger set Sλt0,x0
of viable scenarios, the better,

because the policy λ is able to maintain the system
within constraints for a large “number” of scenarios

I But “large” in what sense? Probabilistic (stochastic)? Robust?
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Maximizing the probability of success may be an objective

How to gamble if you must,
L.E. Dubbins and L.J.
Savage, 1965

Imagine yourself at a casino with
$1,000. For some reason, you des-
perately need $10,000 by morning;
anything less is worth nothing for
your purpose.

The only thing possible is to gam-
ble away your last cent, if need be,
in an attempt to reach the target
sum of $10,000.

I The question is how to play,
not whether. What ought you do?
How should you play?
I Diversify, by playing 1 $ at a time?
I Play boldly and concentrate,

by playing 1,000 $ only one time?

I What is your decision criterion?



We extend viability kernels to
stochastic viability kernels



Stochastic viability kernels

In stochastic viability, state constraints are to be met along time
with a given confidence level β ∈ [0, 1]

P
(
w(·) ∈ S | xt ∈ At , ut = λt

(
xt
)
∈ Bt

(
xt
)

for t = t0, . . . ,T
)
≥ β

or, equivalently,

P
(
S \ Sλt0,x0

)
≤ 1− β

Stochastic viability kernels
The stochastic viability kernel at confidence level β ∈ [0, 1] is

Viabβt0
=

x0 ∈ X

∣∣∣∣∣∣∣
there exists a policy λ such that

P
(
w(·) ∈ S | xt ∈ At , ut = λt

(
xt
)
∈ Bt

(
xt
)

for t = t0, . . . ,T
)
≥ β





Stochastic viability kernels Viabβt0

for a hake-anchovy fisheries model
[De Lara, Martinet, and Doyen, 2015]
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Stochastic viability kernels
can be obtained by

dynamic programming
[Doyen and De Lara, 2010]



The viability probability is the probability
of satisfying constraints under a policy

Viability probability
The viability probability associated with
the initial time t0, the initial state x0 and the policy λ

is the probability P
(
Sλt0,x0

)
of the set Sλt0,x0

of viable scenarios

P
(
Sλt0,x0

)
= P{w(·) ∈ S |

the state constraints xt ∈ At

and the control constraints ut = λt
(
xt
)
∈ Bt

(
xt
)

are satisfied for all times t = t0, . . . ,T}



The maximal viability probability is the upper bound
for the probability of satisfying constraints

Maximal viability probability and optimal viable policy
The maximal viability probability is

max
λ

P
(
Sλt0,x0

)
= 1−min

λ
P
(
S \ Sλt0,x0

)
An optimal viable policy λ∗ satisfies

P
(
Sλ
∗

t0,x0

)
≥ P

(
Sλt0,x0

)

In a sense, any optimal viable policy makes the set of viable scenarios
the “largest” possible



Let us introduce the stochastic viability Bellman function

Suppose that the primitive random variables(
wt0 ,wt0+1, . . . ,wT−2,wT−1

)
are independent under the probability P

Bellman function / stochastic viability value function
Define the probability-to-go as

Vt(x) =

max
λ

P
(
w(·) ∈ S |

control constraints︷ ︸︸ ︷
λs

(
xs
)
∈ Bs

(
xs
)

and

state constraints︷ ︸︸ ︷
xs ∈ As for s ≥ t

)
where xs+1 = fs

(
xs , λs

(
xs
)
,ws+1

)
and xt = x

I The function Vt(x) is called stochastic viability value function
(Bellman function)

I The original problem is Vt0 (x0)



The dynamic programming equation
is a backward equation satisfied by
the stochastic viability value function

Proposition
If the primitive random variables

(
wt0 ,wt0+1, . . . ,wT−2,wT−1

)
are

independent under the probability P,
the stochastic viability value functions Vt0 , . . . , VT

satisfy the following backward induction

VT (x) = 1AT
(x)

Vt(x) = 1At (x) max
u∈Bt(x)

Ewt+1

[
Vt+1

(
ft
(
x , u,wt+1

))]
for all x ∈ X, and where t runs from T − 1 down to t0



Algorithm for the Bellman functions
and the stochastic viable controls

initialization VT (x) = 1AT
(x);

for t = T ,T − 1, . . . , t0 do
forall x ∈ X do

forall u ∈ Bt(x) do

Ewt+1

[
Vt+1

(
ft
(
x , u,wt+1

))]
maxu∈B(t,x) Ewt+1

[
Vt+1

(
ft
(
x , u,wt+1

))]
Vt(x) = 1At (x) maxu∈Bt(x) Ewt+1

[
Vt+1

(
ft
(
x , u,wt+1

))]



The stochastic viable dynamic programming equation
yields stochastic viable policies

For any time t and state x , let us assume that the set

Bviab
t (x) = arg max

u∈Bt (x)

(
1At (x)Ewt+1

[
Vt+1

(
ft
(
x , u,wt+1

))])
of viable controls is not empty

Proposition
Then, any (measurable) policy λ such that λ∗t (x) ∈ Bviab

t (x) is an optimal
viable policy which achieves the maximal viability probability

Vt0 (x0) = max
λ

P
(
Sλt0,x0

)



The dynamic programming equation yields
the stochastic viability kernels

The stochastic viability kernel at confidence level β turns out to coincide
with the section of level β of the stochastic value function:

Vt0 (x0) ≥ β ⇐⇒ x0 ∈ Viabβt0



Displaying trade-offs between critical thresholds and risk
[De Lara and Martinet, 2009]

P

 Ct ≥ C [, Et ≥ E [︸ ︷︷ ︸
indicators ≥ thresholds

, ∀t



  

Viability probability

Ecological
Objective

Economic
Objective



Tourism issues impose constraints upon traditional
economic management of a hydro-electric dam
[Alais, Carpentier, and De Lara, 2017]

I Maximizing the revenue
from turbinated water

I under a tourism constraint
of having enough water
in July and August



The red stock trajectories fail to meet
the tourism constraint in July and August



90% of the stock trajectories meet the tourism constraint
in July and August



We plot iso-values for the maximal viability probability

as a function of guaranteed thresholds S [ and P [
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We extend viability kernels to
robust viability kernels

�

Beware: what is below is under construction



Robust viability kernels

In robust viability, state constraints that are not met along time
with a given implausibility level η ∈ [−∞, 0]

K
(
S \ Sλt0,x0

)
≤ η

Robust viability kernels
The robust viability kernel at implausibility level η ∈ [−∞, 0] is

Viabηt0
=

{
x0 ∈ X

∣∣∣∣∣ there exists a policy λ such that

K
(
S \ Sλt0,x0

)
≤ η

}



We recover the classic robust framework
by using a uniform density

I The classic robust framework S ⊂ Sλt0,x0

I corresponds to the cost measure K
associated with the uniform density −δS because

K(S \ Sλt0,x0
) = sup

w(·)∈S\Sλt0,x0

(
−δS

(
w(·)

))
=


−∞ if S ⊂ Sλt0,x0

(Sλt0,x0
totally plausible)

0 if (S \ Sλt0,x0
) ∩ S 6= ∅

I so that
K
(
S \ Sλt0,x0

)
≤ η < 0 ⇐⇒ S ⊂ Sλt0,x0



Robust viability kernels
can be obtained by

dynamic programming



The viability implausibility is the implausibility
of satisfying constraints under a policy

Viability implausibility
The viability implausibility associated with
the initial time t0, the initial state x0 and the policy λ

is the implausibility K
(
S \ Sλt0,x0

)
of the set Sλt0,x0

of viable scenarios

K
(
S \ Sλt0,x0

)
= K (S \ {w(·) ∈ S |

the state constraints xt ∈ At

and the control constraints ut = λt
(
xt
)
∈ Bt

(
xt
)

are satisfied for all times t = t0, . . . ,T} )



The minimal viability implausibility is the lower bound
for the implausibility of satisfying constraints

Minimal viability implausibility and optimal viable policy
The minimal viability implausibility is

min
λ

K
(
S \ Sλt0,x0

)
An optimal viable policy λ∗ satisfies

K
(
S \ Sλ

∗

t0,x0

)
≤ K

(
S \ Sλt0,x0

)

In a sense, any optimal viable policy makes the set of viable scenarios
the “largest” possible



The viability implausibility is (max,+)-additive

K
(
S \ Sλt0,x0

)
= K (S \ {w(·) ∈ S |

the state constraints xt ∈ At

and the control constraints ut = λt
(
xt
)
∈ Bt

(
xt
)

are satisfied for all times t = t0, . . . ,T} )

= K
( T⋃

t=t0

{w(·) ∈ S | xt 6∈ At or ut = λt
(
xt
)
6∈ Bt

(
xt
)
}
)

= max
t=t0,...,T

K
(
{w(·) ∈ S | xt 6∈ At or ut = λt

(
xt
)
6∈ Bt

(
xt
)
}
)



Robust viable epidemics control
[Sepulveda Salcedo and De Lara, 2019]



Sources of uncertainty abound

Uncertainties are captured by

{
mosquitoes transmission rate AM

t

human transmission rate AH
t

in the forthcoming model



New variables

I Time
I Discrete-time t = 0, 1, . . . ,T

with interval [t, t + 1[ representing one day

I State variables
I Mt denotes the proportion of infected mosquitoes

at the beginning of the interval [t, t + 1[
I Ht denotes the proportion of infected humans

at the beginning of the interval [t, t + 1[

I Control variable
I Ut denotes the mosquito mortality due to fumigation

during the interval [t, t + 1[



Discrete-time dynamic control model with uncertainties

I Let us denote by f (M,H,U,AM ,AH) the solution, at time s = 1,
of the deterministic differential system
with initial condition

(
m0, h0

)
= (M,H)

and stationary control U

I We obtain the sampled and controlled Ross–Macdonald model(
Mt+1,Ht+1

)
= f
(
Mt ,Ht ,Ut ,A

M
t ,A

H
t

)
I The control constraints capture limited fumigation resources

U ≤ Ut ≤ U , ∀t = 0, . . . ,T − 1

during a day



Viability problem statement

I We impose that the viability constraint

Ht ≤ H , ∀t = 0, . . . ,T

I holds true whatever the scenario (sequence of uncertainties)

(AM(·),AH(·)) =
(

(AM
0 ,A

H
0 ), . . . , (AM

T−1,A
H
T−1)

)
belonging to a subset S ⊂ (R2)T



In the robust framework,
we need a new definition of solution

I A policy Λ is defined as a sequence of mappings

Λ = {Λt}t=0,...,T−1 , with Λt : [0, 1]2 → R

where each Λt maps state (M,H) towards control U

I A policy induces a sequence of controls by

Ut = Λt

(
Mt ,Ht

)
I A policy Λ is said to be admissible

if it satisfies the control constraints

Λt : [0, 1]2 → [U,U]



Robust viability problem statement

The robust viability kernel is the set of initial conditions
(
M0,H0

)
from which at least one admissible policy Λ gives infected mosquitoes
and infected humans trajectories by the dynamics(

Mt+1,Ht+1

)
= f
(
Mt ,Ht ,Ut ,A

M
t ,A

H
t

)
with input controls

Ut = Λt

(
Mt ,Ht

)
so that

Ht ≤ H , ∀t = 0, . . . ,T

for all the scenarios((
AM

0 ,A
H
0

)
, . . . ,

(
AM
T−1,A

H
T−1

))
∈ S ⊂ (R2)T



We make a tough assumption on the set of scenarios

I A scenario is a time sequence of uncertainty couples(
AM(·),AH(·)

)
=
((

AM
0 ,A

H
0

)
, . . . ,

(
AM
T−1,A

H
T−1

))
I We make the strong independence assumption that(

AM
t (·),AH(·)

)
∈ S = S0 × S1 × · · · × ST−1

I Therefore, from one time t to the next t + 1,
uncertainties can be drastically different since
(AM

t ,A
H
t ) is not related to (AM

t+1,A
H
t+1)

I Such an assumption makes it possible to write
a dynamic programming equation with (M,H) as state variable

I For the sake of simplicity, we take

S0 = S1 = · · · = ST−1 = S



Numerical resolution of the dynamic programming equation

initialization VT (M,H) = 1[0,1]×[0,H](M,H);

for t = T ,T − 1, . . . , 0 do

forall (M,H) ∈ [0, 1]× [0,H] do

forall U ∈ [U,U] do

forall (AM ,AH) ∈ S do

Vt+1

(
f (M,H,U,AM ,AH)

)
min

(AM ,AH )∈S
Vt+1

(
f (M,H,U,AM ,AH)

)
max

U∈[U,U]
min

(AM ,AH )∈S
Vt+1

(
f (M,H,U,AM ,AH)

)
Vt

(
t,M,H

)
= 1[0,1]×[0,H](M,H)× Vt+1

(
f (M,H,U,AM ,AH)

)



Uncertainty sets

We consider three nested sets of uncertainties

SL ⊂ SM ⊂ SH ⊂ R2
+

L) deterministic case

SL =
{
ÂM
}
×
{
ÂH
}

M) medium case

SM =
[
AM ,AM

]
×
[
AH ,AH

]
H) high case

SH =
[
AM ,AM

]
×
[
AH ,AH

]



Robust viability kernels shrink when uncertainties expand



Conclusion on robust viability analysis

The numerical results show that the viability kernel without uncertainties
is highly sensitive to the variability of parameters such as

I biting rate

I probability of infection to mosquitoes and humans

I proportion of female mosquitoes per person

Maybe we should focus the effort on reducing
these three sources of uncertainty
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Exposure, vulnerability, resilience?

I Acceptable set/viability constraints:
I possible values for output variables + critical thresholds

I Adaptive capacity: set of viable policies?
I = policies depending on available observations and enabling the

system to remain within the acceptable set for a certain number of
scenarios (expressing the level of risk tolerated)

I exist only in a viable state

I Exposure: exposure is high when
I the current variables are close to the acceptable set boundary?

I Vulnerability: acceptable set/viability constraints
+ adaptive capacity?

I Resilience:
I the more resilient, the lower the costs to reach a viable state
I the less resilient,

the farther from a robust or stochastic viability kernel



The minimal time of crisis and recovery measures
the distance to a viability kernel in terms of time units
[Doyen and Saint-Pierre, 1997]

[Martinet, Doyen, and
Thébaud, 2007]

Relaxing some constraints
to try and enter
into the viability kernel

L. Doyen and P. Saint-Pierre.
Scale of viability and
minimum time of crisis.
Set-valued Analysis, 5:
227–246, 1997.



From time units to cost units

I [Martin, 2005]
La résilience est définie comme
l’inverse du coût des perturbations envisagées

I Resilience as the inverse of minimal expected or robust costs
to reach a stochastic or robust viability kernel

S. Martin. La résilience dans les modèles de systèmes écologiques et
sociaux. Thèse École normale supérieure de Cachan - ENS Cachan, Juin
2005



The three Rs of resilience
[Grafton, Doyen, Béné, Borgomeo, Brooks, Chu,
Cumming, Dixon, Dovers, Garrick, Helfgott, Jiang, Katic,
Kompas, Little, Matthews, Ringler, Squires, Steinshamn,
Villasante, Wheeler, Williams, and Wyrwoll, 2019]

The ’3Rs’ of resilience

I resistance

I recovery

I robustness/reliability
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Dynamics and policies induce
state-control random processes

Given a policy λ, we define a random process

w(·) 7→
(
x(·), u(·)

)
λ

[w(·)]

between scenarios towards state/control trajectories

uncertainty trajectories︷ ︸︸ ︷
S = WT−t0 →

state trajectories︷ ︸︸ ︷
XT−t0+1 ×

control trajectories︷ ︸︸ ︷
UT−t0

by the closed-loop dynamics

xt+1 = ft
(
xt , λt

(
xt
)
,wt+1

)
, t = t0, . . . ,T − 1

ut = λt
(
xt
)



Stochastic and robust viability correspond to
controlling a random process within
a product (box) acceptable set

We consider an acceptable set

A = {
(
x(·), u(·)

)
| ut ∈ Bt

(
xt
)

and xt ∈ At , ∀t = t0, . . . ,T}
⊂ XT−t0+1 × UT−t0

which has a product structure (box)

A =
T−1∏
t=t0

{
(
xt , ut

)
| ut ∈ Bt

(
xt
)

and xt ∈ At} × AT

⊂
T−1∏
t=t0

(X× U)× X



Stochastic and robust viability correspond to
controlling a random process within
a product (box) acceptable set

Find a policy λ such that

I stochastic viability
the probability that the random process

(
x(·), u(·)

)
λ

does not take values in the acceptable set A is low enough

P
{
w(·) |

(
x(·), u(·)

)
λ

[w(·)] 6∈ A
}
≤ 1− β

I robust viability
the plausibility that the random process

(
x(·), u(·)

)
λ

does not take values in the acceptable set A is low enough

K
{
w(·) |

(
x(·), u(·)

)
λ

[w(·)] 6∈ A
}
≤ η



Extension to more general
acceptable sets of random processes
[De Lara, 2018]

Move to acceptable sets of random processes

A ⊂ XT−t0+1 × UT−t0 −→ A ⊂
(
XT−t0+1 × UT−t0

)S
defined by vectorial risk measures? (one measure by relevant output)

I in mathematical finance, risk is often measured as a minimal capital
requirement ρ(X) to make a position X “acceptable” to a regulator
thus, it is a form of minimal distance (gauge) to an acceptance set

I convex risk measures (diversification of risk)
ex. tail value at risk (expected loss above a critical threshold)

I the stochastic and robust cases appear as special (extreme) cases
of risk measures (built with expectation and fear operators)
in a jungle to be explored and used (distributionaly robust, etc.)



Steps towards an operational definition of resilience

I Dynamical model
I stages, decision steps
I possible actions, controls, decisions, together with their restrictions
I uncertainties, scenarios
I states, dynamics, system
I policies, decision rules

I Objectives
I critical thresholds
I risk measures (stochastic, robust, distributionaly robust, etc.)
I acceptable sets of random processes

I Compute
I (robust, stochastic) viability kernel = viable states for which

policies exist that can keep the system
within critical thresholds, despite of uncertainties

I minimal cost to reach a viability kernel = inverse of resilience
I 3Rs
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“Nul n’est mieux servi que par soi-même”
“Self-promotion, nobody will do it for you” ;-)

M. De Lara, L. Doyen, Sustainable Management of Natural Resources.
Mathematical Models and Methods, Springer, 2008.
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